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Abstract

Many psychological theories predict U-shaped relationships: The effect of x is positive for low values of x, but negative
for high values, or vice versa. Despite implying merely a change of sign, hypotheses about U-shaped functions are
tested almost exclusively via quadratic regressions, an approach that imposes an arbitrary functional-form assumption
that in some scenarios can lead to a 100% rate of false positives (e.g., the incorrect conclusion that y = log(x) is U
shaped). Estimating two regression lines, one for low and one for high values of x, allows testing for a sign change
without a functional-form assumption. I introduce the Robin Hood algorithm as a way to set the break point between
the lines. This algorithm delivers higher power to detect U shapes than all the other break-point-setting alternatives I
compared with it. The article includes simulations demonstrating the performance of the two-lines test and reanalyses
of published results using this test. An app for running the two-lines test is available at http://webstimate.org/twolines.

Keywords

regression, hypothesis testing, U shape, nonlinearity, open data, open materials

Received 12/22/17; Revision accepted 9/14/18

Is there such thing as too many options, too many
virtues, or too many examples in an opening sentence?
Researchers are often interested in such possible
U-shaped relationships, in which the effect of x on y is
hypothesized to be positive for low values of x, but
negative for high values of x (or vice versa). Just among
articles published online in 2016, for instance, I found
two articles testing U-shaped relationships in a nonex-
haustive search of each of the following four journals:
Journal of Experimental Psychology: General (Payne,
Brown-lannuzzi, & Loersch, 2016; von Bastian, Souza,
& Gade, 2016), Psychological Science (Choi & Kirkorian,
2016; Loschelder, Friese, Schaerer, & Galinsky, 2016),
Journal of Personality and Social Psychology (Jaspers &
Pieters, 2016; Josef et al., 2016), and journal of Applied
Psychology (Koopmann, Lanaj, Wang, Zhou, & Shi, 2016;
Wilson, DeRue, Matta, Howe, & Conlon, 2016).

Here, I identify, and provide a remedy for, a large
and pernicious disconnect between the predictions that
social scientists make when they hypothesize that a

relationship is U shaped and the statistical test they run
to examine if a relationship is U shaped.
In particular, when social scientists hypothesize that
a relationship, y = f(x), is U shaped, they are merely
hypothesizing that f(x) contains a sign change: For low
values of x, its effect on y is positive, /'(x) > 0, whereas
for high values of x, the effect is negative, /' (x) < 0—or
vice versa. As Lind and Mehlum (2010) wrote in their
methodological article on U-shape testing, “to test . . .
for the presence of a U shape . .. we need to test
whether the relationship is decreasing at low values
.. and increasing at high values” (p. 110). Just a sign
change is, for example, what the hypotheses from the
eight articles cited in the opening paragraph predicted,
what was hypothesized in all the articles reviewed by
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Grant and Schwartz (2011) in their examination of
U-shaped effects in psychology, and what the classic
Yerkes-Dodson “law” involves.

Nevertheless, when it comes to testing empirically
whether f(x) is U shaped, social scientists do not just
examine if it exhibits a sign change. They instead esti-
mate a quadratic regression of the form y = bx + cx?
and then rely on its estimates, which are strictly valid
only if the arbitrarily assumed quadratic functional form
is exactly true, to evaluate if the results imply a sign
change in f(x).

Researchers are so used to testing for U shapes with
quadratic regressions that they often use the terms Ushape
and quadratic as synonyms, though these terms in fact
describe distinct features of mathematical functions.!
For instance, the relationship between the standard
deviation and the variance is quadratic, V = (SD)?, but
it is not U shaped. Conversely, y = log(x) — 2x, is U
shaped but not quadratic: The y values are not propor-
tional to the square of the x values.?

Assuming a quadratic functional form when the func-
tional form is not quadratic can elevate the rates of
false-positive and false-negative results in testing for U
shapes. Elevation of the false-positive rate is especially
likely when the true function, f(x), flattens out (e.g., a
ceiling effect), because the quadratic formula is unable
to generate a long plateau and so, when its functional
form is forced on the data, it generates a spurious sign
change. For instance, the quadratic regression can,
under realistic circumstances, yield a 100% false-positive
rate, indicating with near certainty every time that, for
example, y = log(x) is a U-shaped relationship even
though it is not (e.g., look ahead at Fig. 2a). Under
other circumstances, it can also plausibly yield a 100%
false-negative rate, indicating with near certainty every
time that a relationship that is blatantly U shaped is not
U shaped (e.g., look ahead at Fig. 3).

In this article, I propose that to test for the presence
of a U-shaped relationship, we rely instead on two
regressions lines—one for low values of x, the other for
high values of x—and verify that one slope is positive
and the other negative. The advantage is that regression
lines can diagnose the sign of the average effect without
making functional-form assumptions about f(x). This two-
lines approach has on occasion been used as an informal
robustness test to follow up the estimation of a quadratic
regression (see, e.g., Iribarren, Sharp, Burchfiel, Sun, &
Dwyer, 1996; Qian, Khoury, Peng, & Qian, 2010; Seidman,
2012; Ungemach, Stewart, & Reimers, 2011).

The contributions of this article are that it (a) explains
why we must discontinue relying on quadratic regres-
sion, in any way, to test hypotheses involving U-shaped
relationships; (b) formalizes the two-lines approach to
testing for U shapes; and (¢) introduces the Robin Hood
algorithm to identify the break point for the two lines

and demonstrates that this algorithm provides higher
statistical power for U-shape detection than a variety
of alternatives considered.

Defining U Shaped

The symbol used to represent U-shaped relationships, the
letter U, consists of an uninterrupted line, is symmetric,
includes a flat portion in the bottom, and includes both
a negatively sloped and a positively sloped section. When
social scientists refer to a relationship as U shaped, how-
ever, they imply only that last property: the sign change.

When predictors are not continuous (e.g., they take
only five possible values), researchers and methodolo-
gists use the “U shape” label anyway to describe an
effect for which the sign flips (see, e.g., Cohen, Cohen,
West, & Aiken, 2003, p. 576; Simonton, 1976). When
the function is not symmetric (e.g., when it exhibits a
negative effect for ages 15 up to 75 years and a positive
one only for ages 75 to 95 years), researchers use the
“U shape” label to describe the sign change as well
(Jaspers & Pieters, 2016). When the functional form
lacks a flat portion and the effect switches abruptly
from negative to positive, researchers also use the “U
shape” label to describe the sign change (see Choi &
Kirkorian, 2016, Fig. 3). Relying on the same terminol-
ogy, in this article T use the “U shape” label to imply
only a sign change in f(x), without implying that f(x)
has any of the other characteristics of the letter U.

Neither the two-lines test proposed here nor the
quadratic-regression-based tests for a U shape statisti-
cally distinguish between continuous and discontinuous
U shapes, between symmetric and asymmetric U shapes,
or between U shapes with and without flat portions
(the quadratic regression implicitly assumes that f"(x)
is continuous, but does not test whether it is). Thus,
researchers interested in assessing these additional fea-
tures of f(x) need to run additional statistical tests, not
just a U-shape test, whether they rely on the quadratic
regression or on the two-lines test.

Disclosures

The original data and R code to reproduce all the figures
are available at https://osf.io/psfwz/. The appendix
presents the table of contents for the Supplemental
Material available online (at http://journals.sagepub
.com/doi/suppl/10.1177/2515245918805755).

Two Average Slopes

Following the definition in the previous section, let us
formally define a function, y = f(x), as U shaped if there
exists an x value, x., within the set of possible x values,
such that the average effect of x on y is of opposite
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sign for x < x. and x > x,.. The null hypothesis is that
no such x, value exists, and the alternative hypothesis
is that at least one such x, value exists.?

To test if the effect of x on y changes sign for x < x,
versus x > x,., we need to set the value of x. and then
compute two average slopes, one for x < x, and one
for x > x.. I discuss the issue of setting the break point
later on but for now focus on the benefits of using two
regression lines to estimate the two average slopes.

Linear regressions compute the average slope in the
data for the effect of x on y, regardless of the underly-
ing functional form (see, e.g., Gelman & Park, 2008).4
Therefore, to compute two average slopes, we may
simply estimate two regression lines (one for x < x, and
another for x > x.). We can then reject the null hypoth-
esis of absence of a U shape if the slopes are of oppo-
site sign and are both statistically significant.

It is very important to understand that the regression esti-
mate is the average slope for any functional form, and thus
we are not assuming that the true function is linear when we
compute the average this way. Say the true relationship is y =
A2, and thus not linear, and the data consist of three observa-
tions, x =1, 2, 3 and thus y =1, 4, 9. The slope between the
first two points is (4 — 1)/(2 — 1) = 3, the slope between the
last two points is (9 — 4)/(3 — 2) = 5, and the slope
between the first and last points is (9 — 1)/(3 — 1) = 4.
So, the average slope is (3 + 5 + 4)/3 = 4, and a linear
regression will correctly recover this average slope.’

That regression estimates correspond to the average
slope in the range of data no matter what underlying
form f(x) has does not mean that the two-lines test is
valid under all circumstances or that it constitutes a
nonparametric test. First, if the true relationship has
more than one sign change (e.g., if it is W, N, or X
shaped), the two-lines test may correctly but mislead-
ingly indicate that one portion has on average a positive
slope and the other a negative one, leading a researcher
to erroneously classify a W-, N- or X-shaped relation-
ship as U shaped (for more on this point, see the Limi-
tations section). Second, because the two-lines test
relies on linear regression, anything that affects the
validity, interpretability, bias, robustness, or efficiency
of linear regressions also affects the validity, interpret-
ability, bias, robustness, or efficiency of the two-lines
test. For example, lack of independence across observa-
tions leads to underestimated standard errors in regres-
sion results in general and to higher false-positive rates
with the two-lines test in particular.

The Misuse of Quadratic Regressions
to Test for a U Shape
The sophistication with which results from quadratic

regressions are interpreted in U-shape testing can be
classified into three levels according to how many

additional calculations are conducted after obtaining
the regression results.

Level 1: Is the quadratic term significant?

The most basic approach involves checking if the
estimates of @ and b in y = ax + bx? imply a U-shaped
function and if the estimate of b is statistically signifi-
cant. This approach is advocated in some prominent
textbooks. For example, Cohen et al. (2003) wrote,
“The [quadratic] coefficient is negative [and signifi-
cant] . . ., reflectling] the hypothesized initial rise
Sollowed by decline” (p. 198; italics added). The sig-
nificant coefficient need not, in fact, imply a U-shape
relationship.®

An article by Simonton (1976), which has been cited
about 150 times, illustrates. One key inference from his
analysis of correlates of the eminence of “geniuses” was
that “ranked eminence is . . . a curvilinear inverted-U
function of education” (p. 218). The point estimates of
interest, within a larger specification, were y = 4.872x —
11.96x?, where y was the measure of eminence and x
the measure of education (see the estimates in his Table
2, p. 223). Figure 1 here shows that within the range
of possible values, the regression results do not imply
a U shape. For every possible value of x, higher x is
associated with lower y. Only for negative (impossible)
values of x is the sign positive, and hence the overall
pattern is U shaped only if those values are included.
Note that the estimated correlation between education
and eminence is opposite the intuitive causal effect one
might expect.

Level 2: Is the sign flip within the
range of values?

At the next level, a quadratic regression is interpreted
as providing evidence for a U-shaped relation only if
the estimate of b is statistically significant within the
range of observed, or at least possible, x values. Some
researchers have carried out this additional step in their
published articles (it is also illustrated by the preceding
discussion of Fig. 1). For example, Berman, Down, and
Hill (2002) wrote, “The value [at which the sign flips]
is actually above any value observed in the data, sug-
gesting that, although negative returns are a theoretical
possibility, they are not encountered” (p. 23). Even with
this step, however, it is problematic to conclude that
the relationship is U shaped, because we need to take
into account sampling error. We assume that the true
relationship is y = ax + bx*, but we do not observe a
and b and instead observe estimates a and b. As esti-
mates, they contain error, and therefore, our estimate
of the point at which the effect of x on y flips sign,
(—&/2[;), also contains error.”
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Fig. 1. Example of a significant quadratic term not associated with an actual U shape: Simonton’s (1976) data for
ranked eminence of the individual as a function of education. In this example, the overall pattern is U shaped only
if impossible values of x are included. The R code to reproduce this figure is available at https://osf.io/9uwxg/.

Level 3: Is the sign flip statistically
significant within the range of values?

Noting that a quadratic term is simply an interaction of
a variable with itself (see, e.g., McClelland & Judd, 1993,
p. 382), we can take into account sampling error in
analyses of quadratic regression estimates in general,
and in analyses of the point where the effect of x on y
flips sign in particular, as we do for any regression inter-
action. In particular, we may estimate the effect of x on
¥, and its confidence interval and/or p value, for different
values of x. This general approach to analyzing interac-
tions was first introduced by Johnson and Neyman
(1936). It is sometimes known as the pick-a-point or
spotlight approach when applied to a handful of
x values, and as the floodlight, or Johnson-Neyman,
procedure when applied to all of them or to the critical
x values where the slope changes between being statisti-
cally significant and not being statistically significant
(Aiken & West, 1991; Preacher, Curran, & Bauer, 2006;
Spiller, Fitzsimons, Lynch, & McClelland, 2013). In recent
years, a few articles have explicitly suggested relying on
this Johnson-Neyman procedure to analyze quadratic-
regression result when testing for U-shaped relationships
(Lind & Mehlum, 2010; Miller, Stromeyer, & Schwieterman,
2013; Spiller et al., 2013).®

Even this more sophisticated use of quadratic regres-
sions to test for a U shape is invalid, however. The
reason is that the regression results, and therefore the
Johnson-Neyman calculations, hinge on the assumption

that the true relationship between x and y is exactly
quadratic. Figure 2 provides realistic examples of cases
in which the assumption is not met and the conclusions
are erroneous.

Figure 2a shows a scenario in which the true relationship
is y = log(x) and a quadratic regression would result in
= 13.94x — 10.45x2. In this equation, the effect of x on
yis, dy/dx =13.96 - 2 * 10.45x. When x = 0.25, the effect
of x is positive, 8.735, but in contrast, when x = 0.75,
the effect is negative, —1.71. Of course, that result is
wrong, as the effect of x is never negative when y =
log(x), but it is estimated as negative because we are
incorrectly assuming that the relationship is quadratic.
Specification error is behind the erroneous conclusion.
Figures 2b and 2c¢ provide additional examples of qua-
dratic regression leading to misdiagnosis of a U-shaped
relationship.

Assuming a quadratic relationship may also lead to
false negatives, failure to diagnose U-shaped relation-
ships that are present, even when the sample size is
infinite. This will occur when the true relationship is U
shaped but deviates sufficiently from the quadratic
shape (see Fig. 3).

The quadratic regressions in Figures 2and 3 perform
poorly because they minimize the sum of squared
errors, (y — »? without taking into account overall
shape. During the model-fitting process, there is no
penalty if obtaining a better fit requires outputting a
quadratic function that generates a nonexistent U shape
or misses a real U shape.
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Fig. 3. Example of a quadratic regression that falsely indicates the absence of a U
shape. The graph was created from a single data set with N = 100,000 observations;
x was generated by drawing at random from the U(0,1) distribution and squaring
the result. The R code to reproduce this figure is available at https://osf.io/3psev/.

What About Diagnostic Tests?

Many textbooks recommend that researchers conduct
diagnostic tests before interpreting regression results, but
are those recommendations enough to protect us from
wrong inferences about U shapes based on quadratic
regressions? In this section, I argue that the answer is no.

First, in practice, researchers do not follow the rec-
ommendations; they do not run, or at least do not
report, diagnostic tests on their regression results. Sec-
ond, regression diagnostics qualitatively assess the gen-
eral adequacy of the model, but we want to quantitatively
assess the adequacy of the conclusion that the relation-
ship is U shaped. Figure 4 illustrates this problem,
showing a case in which regression diagnostics for a
true-positive and a false-positive U-shaped relationship
are indistinguishable from one another.

Third, it is not clear what researchers should do
when they diagnose their quadratic regression as mis-
specified. If not a quadratic model, what model should
they estimate? There is no default alternative; research-
ers would need to try multiple functional forms (e.g.,
higher-order polynomials, interrupted log regressions,
various interactions) until one subjectively seems to fit
well enough. This leads to two problems. One is that
when those more complicated models are estimated,
it is not clear how the researcher should go about
testing for a U shape. For example, if we fit a

fourth-order polynomial to the y = log(x) data used to
construct Figure 2a, we obtain the following estimate:
y = 4dx — 142x% + 189x° — 86x*. Should we interpret this
equation as evidence for or against a U shape? Perhaps
the most sensible thing to do is to compute the implied
marginal effect of x on y for every value of x and then
average the resulting values for two ranges of x. But
now we have a two-lines test, except that we are aver-
aging fitted values, computed assuming an arbitrary
functional form, instead of averaging observed values.
In addition, the second problem is that the abundance
of alternatives to the quadratic opens the door to over-
fitting in general and p-hacking in particular.

The Two-Lines Solution

Interrupted regression

Because hypotheses positing U shapes state merely that
the effect of x on y changes sign for low versus high x
values, we should test these hypotheses by merely test-
ing if the effect of x on y changes sign for low versus
high x values. Such a test involves computing two aver-
age slopes, which in turn is done by estimating two
regression lines, one for x < x, and the other for x >
x,, where x, is the break point separating the two
regions. One may increase statistical efficiency by
simultaneously estimating both lines in a single
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Fig. 4. Example illustrating that diagnostic plots are not diagnostic about the correctness of an inference about a
U-shaped relationship based on quadratic-regression results. The data for this example were generated by drawing
400 observations from a U(0,1) distribution for x and adding noise from an N(0,1) distribution to the true y value.
The true relationship for the data in the left column is not U shaped, but the true relationship for the data in the
right column is U shaped (see the models in the top row). The second row shows the results from a quadratic
regression for each data set. In the third row, the residuals are plotted against fitted values; in the absence of
specification error, there should be no association between the two, but the fitted (red) lines in the graphs show
that the residuals are higher in their middle range than at lower and higher values. The R code to reproduce this

figure is available at https://osf.io/kuj3d/.
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Fig. 5. Examples illustrating that the break point that maximizes overall two-lines fit does not necessarily maximize power to detect a
U-shaped relationship. Each graph shows the best-fitting two-lines model (obtained using Muggeo’s, 2003, procedure) and the real relation-
ship for a simulated data set. The vertical dotted lines contrast the break point for the two regression lines that maximizes overall fit and
the break point at which the sign of the effect of x on » changes (i.e., the U-shape break point). The R code to reproduce this figure is

available at https://osf.io/w3m?2u/.

regression, relying on what is often referred to as an
interrupted regression (see, e.g., Marsh & Cormier,
2001, p. 7). Specifically, interrupted regressions con-
form to the following general formulation:’

Y =a+ bx + Xy, + d * bigh + ZB,, (D

where x;,,, = x —x, if x < x_ and 0 otherwise, xj,,;, = X — X,
if x 2 x. and 0 otherwise, and high =1 if x > x_ and
0 otherwise.

Z is the (optional) matrix with covariates, and By is its
vector of coefficients.

Setting the break point

We can set the break point seeking to maximize fit or
to maximize statistical power. That is, we can seek to
arrive at a model that fits the data best or at a model
that has the highest probability of diagnosing f(x) as
U shaped when it is, without exceeding the nominal
false-positive rate when it is not.

Maximizing fit. Setting the break point to maximize fit
involves answering this question: Given that we will fit
the data with two lines, which break point leads to
two lines that best fit the data overall? There is a litera-
ture examining how to maximize fit for segmented and

interrupted regressions (see, e.g., Hansen, 2000; Molinari,
Daures, & Durand, 2001; Muggeo, 2003; Stasinopoulos &
Rigby, 1992). But when testing for U shapes we are not
trying to fit the data as well as possible.

We are not fitting two lines with a possible discontinu-
ity between them because we believe the real relation-
ship has that shape and we want to approximate it as
well as possible. Rather, we are only estimating regres-
sions to compute average slopes in two sets of x values.
Thus, we want to find the break point that answers a
different question: If the true relationship is U shaped
(i.e., if there really is a sign change for the effect of x
on y within the set of observed values), which break
point maximizes the chance that we will detect it? Figure
5 illustrates the conflict between these two goals. More-
over, later on, when evaluating the performance of dif-
ferent break points, I show that the break point that
maximizes fit provides lower statistical power than that
obtained with the proposed Robin Hood procedure.

Maximizing power. Without making strong assump-
tions about (a) the functional form of the relationship
between x and y, f(x); (b) the distribution of x; and (¢)
the distribution of the error term, it does not seem pos-
sible to arrive at a theoretically optimal break point that
maximizes statistical power for U-shape testing. The
approach I propose here, instead, is algorithmic, designed
to have high power, rather than demonstrably maximal
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power, for a very broad range of situations (but presum-
ably not alD). T developed the algorithm keeping in mind
three key ideas: (a) Because the two-lines test requires
both slopes to be significant, increasing its power requires
increasing the power of the statistically weaker of the two
lines. A segment of an interrupted regression, in turn, has
more power when (b) it is steeper (i.e., the effect is big-
ger) and (©) it includes more observations (i.e., the stan-
dard error is smaller). Thus, conceptually, the algorithm
sets a break point that will increase the statistical strength
of the weaker of the two lines, by placing more observa-
tions in that segment without overly attenuating its slope.
I refer to it as the Robin Hood algorithm, for it takes away
observations from the more powerful line and assigns
them to the less powerful one.

I rely on Figure 6 to describe the Robin Hood algo-
rithm. Every panel involves the same true underlying
relationship between x and y, depicted by the solid line
in Figure 6a, and the same single random sample,
depicted with the same scatterplot in every panel. From
left to right, the top row in the figure illustrates increas-
ingly sophisticated approaches for setting the break
point, culminating in the proposed Robin Hood algo-
rithm in the rightmost column. The bottom row shows
the resulting two-lines regression estimates.

For illustrative purposes, consider attempting to
obtain two steep slopes by setting x., the break point,
at the x value associated with the most extreme
observed y value (first column in Fig. 6). An obvious
problem is that individual observations, especially the
most extreme one, can be greatly influenced by random
error. Figure 6a, for example, shows that the x value
associated with the most extreme observation, x = 0.78,
falls outside the range of x values with maximum true
y values, 0.5 < x < 0.7.

We can cancel much of the random error by estimat-
ing a flexible model of f(x), for example, a polynomial,
local, kernel, or spline regression, and using the mod-
el’s fitted values instead of the observed values to iden-
tify the most extreme observations. I rely on splines
here because they easily accommodate covariates, can
be used to construct confidence intervals for f(x), and
do not rely on functional-form assumptions (see Section
3.2.1 in Wood, 20006).'° In particular, Figures 6b and 6f
depict the fitted values, ps, obtained from a cubic
spline regression and showcase the consequences of
moving the break point from the x associated with the
most extreme observed y to the x associated with the
most extreme fitted value, p_...

In the example depicted in Figure 6, and presumably
in many psychological phenomena, relationships are U
rather than V shaped, having regions with a relatively
flat maximum. It therefore seems sensible to identify
the set of most extreme ps rather than the single most
extreme . I define yps within 1 SE of p _, as that set
and refer to it as Jg,,. Thus, every 9 in Py, is within 1

SE of P ... The solid line in Figure 6¢ depicts yy,,, and
Figure 6g shows the slopes of the two resulting regres-
sion lines when the break point is set as the midpoint
of )A/ﬂat'

We now have a set of candidate x, values, those
associated with py,.. The goal is to choose the one
among them that we expect to result in the highest
statistical power to detect a U shape, and thus the one
among them that we expect to give the highest statisti-
cal power to the weaker of the two lines within the
interrupted regression. The algorithm achieves that goal
by setting x. so that it allocates a disproportionate share
of the observations in 7, to the weaker line; by
increasing the number of observations in that segment,
it reduces its standard error, increasing its statistical
power.

The algorithm proceeds in two steps. In the first step,
it identifies which of the two lines is statistically weaker.
In the second step, it sets the break point by allocating
observations in Jy,, to the first versus second line in
inverse proportion to the lines’ relative statistical
strength. Specifically, in the first step, the algorithm sets
the x value that is the midpoint of pg, as an interim
break point. It estimates an interrupted regression and
computes the absolute values of the test statistics for
both lines, z; and z,, and then sets the break point for
the second step in inverse proportion to these zs. Spe-
cifically, the break point becomes the z,/(z; + z,)th
percentile of the x values within pg,,.

If both lines are about equally strong, statistically
speaking, with roughly identical test statistics, the break
point will remain roughly at the midpoint of pg,,. If the
z value of the first line in the first step were, say, 3 times
that of the second line, then the break point would be
set at the 75th percentile of xs within ., so that the
second (weaker) line has 75% of 7, and the first line
the remaining 25%. Again, the algorithm allocates addi-
tional observations from within the ;. region to the
weaker line so that its standard error gets smaller.

In Figure 6, setting the midpoint of J;,, as the break
point leads to z; = 24.28 and z, = 1.71. Computing the
ratio z,/(z, + z,), we obtain 6.58%, so the Robin Hood
algorithm sets the breakpoint at the 6.58th percentile
of the x values associated with 7, which in that sam-
ple corresponds to x = 0.59 (Fig. 6d). Using that break
point, we obtain the final interrupted regression to test
for the presence of a U shape (see Fig. 6h), and in this
case, we obtain a much stronger result for the second
slope, p = .012 (vs. p = .088).

In sum, the Robin Hood algorithm consists of the
following five steps:

1. Estimate a cubic spline for the relationship
between x and y

2. Identify p,.., the most extreme internal fitted
value
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3. Identify Jy,, the set of J values within 1 SE of p,

4. Estimate an interrupted regression using as the
break point the median x value within g, (The
regression will result in two test statistics, one for
each line. Let their absolute values be z; and z,.)

5. Set the break point at the z,/(z, + z,)th percentile
of the x values associated with py,,

It is important to note that because the break point
is set algorithmically within a set of candidate break
points, it conveys no interpretable meaning on its own.
We should not conclude that the breakpoint is the point
where the sign of the effect switches. The specific point
of the sign switch, to the extent it actually exists, is not
estimated precisely with the two-lines test.

Performance of the Two-Lines Test

False-positive and false-negative
U shapes

Figure 7 shows results for false-positive detection of a U
shape in simulated scenarios. The left panel shows results
obtained with six testing procedures (including the Robin
Hood algorithm) when the true relationship would be
expected to lead to the most false positives: an initial
strong effect followed by a long flat segment. The right
panel shows results for the same testing procedures for
scenarios in which the data followed a (monotonic) logis-
tic function. For the quadratic-regression approach, I
report results for its most sophisticated version, the pro-
cedure proposed by Lind and Mehlum (2010), which is
equivalent to that proposed by Spiller et al. (2013), Miller
et al. (2013), and Aiken and West (1991).1!

The results in Figure 7 are highly consistent. They
show that the quadratic-regression approach to testing
for U-shaped relationships had an unacceptably high
false-positive rate—often a 100% rate—for a very broad
range of scenarios. In contrast, the two-lines approach
in general, and the Robin Hood procedure for setting
the break point in particular, showed acceptable perfor-
mance. False-positive rates were typically below the
nominal 5% level (as is typically the case when the null
hypothesis is a composite null; see, e.g., Bowman, Jones,
& Gijbels, 1998), and even the post hoc most extreme
scenario raised the false-positive rate only barely above
the 5% level (and these rates are necessarily overesti-
mates, as they were selected ex post because they were
the highest values).

Exploring factors that influence false-positive rates
(see Supplement 1 in the Supplemental Material), T
found that scenarios using the distribution of x sug-
gested by McClelland (1997) had higher false-positive
rates than other scenarios; greater levels of random
noise were also associated with higher false-positive

rates. I ran additional simulations that relied on that
distribution of x and had even higher levels of noise
than those used in Figure 7 and found that the false-
positive rate did not increase any further.

Figure 8 moves on to false negatives, comparing esti-
mates of statistical power obtained using the Robin
Hood algorithm to set the break point with estimates of
power obtained using four alternative approaches to
setting the break point. Results are shown for two gen-
eral functional forms (Fig. 9 shows examples of the
individual simulations behind the left panel of Fig. 8).
Because quadratic regressions yielded unacceptably
high false-positive rates, Figure 8 does not include
power results for that approach. For statistical inference,
we should select the most powerful test among those
that satisfy the nominal false-positive rate. For example,
if the test consisted of a coin that read “U shape” on
either side, flipping the coin would lead to 100% power,
but this is not a statistical test we would want to use.

To facilitate comparisons with the proposed Robin
Hood procedure, Figure 8 shows the difference between
the power of each alternative procedure and that of the
Robin Hood procedure. The panels of Figure 8 paint a
highly consistent picture. The Robin Hood algorithm gen-
erally outperformed all other alternatives. Two counter-
intuitive general patterns are worth highlighting. First,
estimating three rather than two lines led to dramatic
losses of statistical power; this occurred because the
observations allocated to the middle line did not contrib-
ute to the precision of the slope estimates involved in
the test. Second, the least powerful approach to setting
the break point for a two-lines estimation was an
approach previously proposed by several authors, includ-
ing me: setting the break point as the quadratic regres-
sion’s most extreme fitted value (Haans, Pieters, & He,
2016; Iribarren et al., 1996; Simonsohn & Nelson, 2014).

Demonstrations

In this section, I take two examples of purportedly
U-shaped relationships in the published literature and
demonstrate that using the two-lines test instead of a
quadratic regression would lead to different conclu-
sions. The top row in Figure 10 revisits the analyses
by Sterling, Jost, and Pennycook (2016), who wrote (in
their discussion of secondary analyses), that people
“who were moderate in terms of their support for the
free market appeared to be more susceptible to bullshit
than extremists in either direction” (p. 356). They
arrived at this conclusion that an inverted-U-shaped
relationship was present because the quadratic term
in their regression was significant (p = .026). I success-
fully reproduced their results analyzing their posted
data (Fig. 10a). The two-lines test, however, showed
that the slope of the second line, although negative,
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Fig. 9. A representative subset of 80 of the 2,520 scenarios used to compare power across procedures in the left panel of Figure 8. The solid
lines represent the underlying true functions, and each gray dot represents a single random draw from the specified distributions of x values
and noise. Max())) = the highest fitted value of y. The R code to reproduce this figure is available at https://osf.io/m7avc/.

was far from significant, p = .45 (Fig. 10b). Keep in
mind that if x and y were uncorrelated for high values
of x (i.e., if the true second slope were flat), 50% of
the estimated slopes would be negative (and 45% of
them would be at least as steep as observed—that is
the meaning of the p = .45 reported in the figure). The
data are inconclusive: They are consistent with a
U-shaped relationship, consistent with lack of a cor-
relation among people who endorse free-market

ideology at a relatively high level, and consistent with
a monotonic effect. Again, prediction of a U-shaped
relationship was secondary to the authors. Their core
prediction of an association between free-market ideol-
ogy and bullshit receptivity is consistent with the first
line in the two-lines test).

Swaab, Schaerer, Anicich, Ronay, and Galinsky (2014),
in their Study 2, examined the relationship between the
number of elite players on a country’s soccer team and
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its rating by the Fédération Internationale de Football
Association (FIFA). Their results, they wrote, “revealed a
significant quadratic effect of top talent: Top talent ben-
efited performance only up to a point, after which the
marginal benefit of talent decreased and turned negative”
(p. 1584; italics added). T successfully replicated those
results with independently obtained data, but in the two-
lines test, the slope of the second line was also positive
(albeit far from significant; see Fig. 10b). These data do
not support the conclusion that there is such a thing as
“too much talent” in international soccer teams.

Limitations

In this section, I discuss three limitations of the two-
lines test and the proposed Robin Hood algorithm.

Limitation 1: asymptotic properties

I have proposed an algorithm and evaluated its perfor-
mance via simulation in small samples, without deriving
its theoretical asymptotic properties. Moreover, the two-
lines test uses this algorithm without known theoretical
properties to set the break point.

Limitation 2: X, N, and W shapes

The two-lines test is expected to perform well as long as
the true relationship of interest has at most two regions
where the impact of x on ) has opposite signs; that is,
the relationship is (a) flat overall (no effect), (b) mono-
tonic or weakly monotonic, or (¢) U shaped. It will not
perform well, at least in terms of interpretability, if the
true relationship has more than one change in sign, for
instance, if it is N shaped, X shaped, or W shaped, rather
than U shaped. Such relationships, it is worth noting,

Appendix

Table A1l. Index of the Supplemental Material

invalidate the interpretability of quadratic regressions as
well. The nonparametric smooth line that accompanies
the output generated by the app that runs the two-lines
test (available at http://webstimate.org/twolines/) may
be used as a partial solution to this limitation, as it alerts
users if the relationship looks N, X, or W shaped.

Limitation 3: imprecise false-positive rate

The precise false-positive rate of the two-lines test is not
known, and it cannot be guaranteed to be 5% for any
specific data set, for two reasons. The first reason is that
the null hypothesis of the absence of a U shape is what
is known as a composite null. The second reason is that
the Robin Hood algorithm slightly overfits the data. For
a detailed discussion of these issues, see Supplement 8
in the Supplemental Material. Nevertheless, the false-
positive rate of the two-lines test is expected to be gen-
erally lower than the nominal rate, and almost never
higher than 6% for a nominal a of 5% (see Fig. 7 and
also Supplement 1 in the Supplemental Material).

Conclusions

The use of quadratic regressions to test for U-shaped
relationships is as invalid as it is common. To interpret
the results of a quadratic regression, we need to know
that the true functional form is indeed quadratic—
something that is virtually impossible to know in social
science. The two-lines test is arguably the most straight-
forward test of the hypothesis that the average effect
of x on y is of opposite sign for high versus low values
of x. It makes no assumptions about the functional form
of f(x). The Robin Hood procedure to set the break
point for the two lines achieves notably higher power
than any alternative with which I have compared it.
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Notes

1. Haans et al. (2016) provided a thorough and thoughtful
review of the empirical literature on testing for U-shaped rela-
tionships in management, and yet they quite explicitly treated
U-shaped and quadratic relationships as synonymous (see their
abstract and footnote 1). The methodological article by Miller
et al. (2013) on testing interactions for curvilinear relationships
distinguished between merely curvilinear and U-shaped rela-
tionships, but for both Miller et al. assumed a quadratic func-
tion. Lind and Mehlum (2010)’s article on U-shape testing did
distinguish between U-shaped and quadratic functions, but all
their demonstrations involved estimating quadratic regressions.
2. The function f(x) = log(x) — 2x is U shaped because its slope,
f'(x) = 1/x - 2, is positive for x < 0.5 and negative for x > 0.5.

3. One could refine the definition to preclude more than
one sign change (e.g., not classify a W shape as a U shape)
and could implement the testing by recursively applying the
U-shape test to the two segments behind the U-shaped pattern.
But such refinement adds complexity and does not seem useful
for the vast majority of cases in which a U-shaped relationship
is hypothesized; more than one sign change seems like a rather
unusual prediction in the social sciences.

4. In particular, a regression estimate is the weighted aver-
age of the slope of every pair of data points, with each
pair weighted by the square of the distance between the
predictor values. For instance, in the simple case with one
predictor, the weighted average is calculated as follows:

= Z”u(x, -x,) /zi/(xi -x,)* (see, e.g., Gelman
o ) y .

b
& Park, 2008).]
5. You can verify this by running the following code in R:

x=1:3

y=x"4

Im(y~x)
6. In a later section, Cohen et al. did warn against blindly relying
on quadratic terms, writing that “it is always important to exam-
ine the actual data against both the polynomial regression and
some nonparametric curve such as lowess [i.e., locally weighted
scatterplot smoothing]” (p. 207). Moreover, I do not believe that
the authors would have fallen prey to such fallacious conclu-
sions, but many readers of the textbook probably have.
7. 1f f(x0) = ax + bx?, thenfl(x) = a + 2bx. Solving forf’(xc) =0
leads to x_. = —a/2b.
8. Lind and Mehlum (2010) accompanied their (economics)
article with a STATA module, utest, that runs their proposed
U-shape test. The program is executed after running a regres-
sion. When run after a quadratic regression, as in all the exam-
ples in Lind and Mehlum’s article, their test is equivalent to
the analysis advocated for in psychology textbooks (e.g., Aiken
& West, 1991, p. 77; see Supplement 4 in the Supplemental
Material for a numerical demonstration of the equivalence). But
Lind and Mehlum appear to have developed their test indepen-
dently. The procedures by Spiller et al. (2013) and Miller et al.
(2013) are, as these authors made clear, also directly derivable
from the formulas in Aiken and West (1991, p. 77).
9. If d is forced to be 0, so that a discontinuity at x, is not
allowed, the regression is called segmented instead of inter-
rupted (see, e.g., Muggeo, 2003). Forcing d = 0 introduces bias
onto both b and ¢. For purposes of U-shape testing, one must
rely on interrupted rather than segmented regressions, which
means including high as a predictor in Equation 1.
10. In particular, using the R library mgcy, the command
gam (y~s (x,bs="cr”)) estimates a cubic spline predicting the
dependent variable y with the predictor x. The option bs="cr”
specifies that a cubic spline be used instead of the default, which
is a “plate regression spline” (Wood, 2006, p. 219).
11. Lind and Mehlum considered other functional forms in the
theory section of their article, but all their examples involved
quadratic regressions.
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