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Scientific inquiry is concerned not only with establishing 
whether an empirical relationship holds, but also with 
estimating the size of that relationship. For example, pol-
icy makers not only want to know whether a particular 
policy will produce the desired effect, but also whether 
the size of that effect is large enough to justify putting the 
policy into action. To estimate effect sizes of particular 
relationships, scientists often conduct meta-analyses, 
combining the results of many similar studies into a 
single effect size estimate. Unfortunately, because of 
biases in the publication process, producing an accurate 
effect size estimate is often extremely difficult.

Scientific journals usually do not publish results unless 
they are statistically significant (henceforth assumed to 
correspond to p ≤ .05), a fact we will refer to as publica-
tion bias (see e.g., Fanelli, 2012; Rosenthal, 1979; Sterling, 
1959). Because overestimated effect sizes are more likely 
to be significant than are underestimated ones, the pub-
lished record systematically overestimates effect sizes 
(Hedges, 1984; Ioannidis, 2008; Lane & Dunlap, 1978).

To illustrate, imagine a researcher investigating 
whether people in a happy mood are willing to pay more 
for experiences than are people in a sad mood. She ran-
domly assigns 40 people to watch either a happy video 
or a sad video and then measures their willingness to pay 

for a ticket to see their favorite band in concert. With 20 
people per condition, the two condition means would 
have to differ by at least .64 standard deviations (i.e., d̂  ≥ 
.64) for them to be significantly different.1 Thus, no mat-
ter what the true effect size is, with 20 observations per 
condition, the average significant effect size must be at 
least .64 standard deviations. In fact, even if an effect 
does not exist at all (d = 0), the effect size estimated from 
just the significant studies will be large, with the means 
differing by d̂ = .77 standard deviations (see Fig. 2A).

Scientists wanting to estimate the true size of an effect 
need to correct the inflated effect size estimates that pub-
lication bias produces. In this article, we introduce a new 
and better method for doing so. This method derives 
effect size estimates from p-curve, the distribution of sig-
nificant p values across a set of studies (Simonsohn, 
Nelson, & Simmons, 2014). We show that this simple 
technique, which requires only that we obtain significant 
p values from published studies, allows scientists to much 
more accurately estimate true effect sizes in the presence 
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Abstract
Journals tend to publish only statistically significant evidence, creating a scientific record that markedly overstates the 
size of effects. We provide a new tool that corrects for this bias without requiring access to nonsignificant results. It 
capitalizes on the fact that the distribution of significant p values, p-curve, is a function of the true underlying effect. 
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the “choice overload” literature.
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of publication bias. When the publication process sup-
presses nonsignificant findings, p-curve’s effect size esti-
mates dramatically outperform those generated by the 
most commonly used technique for publication-bias 
correction.

p-Curve and Effect Size

p-curve is the distribution of statistically significant p val-
ues (p < .05) across a set of studies.2 For example, if four 
studies report critical p values of .043, .039, .021, and 
.057, p-curve for this set of studies would include all of 
those that are below .05: .043, .039, .021, but not .057. In 
a previous article, we showed how p-curve’s shape diag-
noses whether a set of studies contains evidential value 
or not (Simonsohn et al., 2014). In this article, we show 
how one can use p-curve’s shape to estimate the average 
true effect size across the set of studies included in 
p-curve. Note that in the face of publication bias, the 
average true effect size will differ from the average 
observed effect size, and that p-curve will estimate the 
former. Here is an intuitive way to think of p-curve’s esti-
mate: It is the average effect size one expects to get if one 
were to rerun all studies included in p-curve.

A p value reflects the likelihood of observing at least 
as extreme an estimate if there is truly no effect (d = 0). 
Thus, by definition, if an effect is not real, then 5% of p 
values will be below .05, 4% will be below .04, 3% will 
be below .03, 2% will be below .02, and 1% will be below 
.01. Thus, under conditions of no effect (d = 0), there will 
be as many p values between .04 and .05 as between .00 
and .01, and p-curve’s expected shape is uniform.

If an effect exists, then p-curve’s shape changes. Its 
expected distribution will be right-skewed: We expect to 
observe more low significant p values (p < .01) than high 
significant p values (.04 < p < .05; Cumming, 2008; Hung, 
O’Neill, Bauer, & Kohne, 1997; Simonsohn et al., 2014; 
Wallis, 1942). For any given sample size, the bigger the 
effect, the more right-skewed the expected p-curve 
becomes. Figure 1 shows some examples.

Conveniently, for a particular statistical test, p-curve’s 
expected shape is solely a function of sample size and 
effect size. Because of this, knowing p-curve’s shape and 
the sample size for a set of studies allows one to compute 
the effect size. Holding sample size constant, a greater 
proportion of small significant p values (i.e., a more 
extreme right skew) implies a larger effect size.

To get an intuition for how to estimate effect sizes 
using p-curve, consider a difference-of-means test with 
n = 20 per cell. As shown in Figure 1, if the true effect size 
is d = .42, then 38% of significant p values are expected to 
be below .01. If the true effect size is d = .91, then 71% of 
significant p values are expected to be below .01. Thus, 
for a set of studies with n = 20 per sample, if 38% of 

significant p values are below .01, then our best guess of 
these studies’ average effect size would be d̂  = .42. If 71% 
of significant p values are below .01, then our best guess 
of these studies’ average effect size would be d̂  = .91.

More generally, for an observed set of significant 
results, one can identify the expected p-curve that most 
closely resembles the observed p-curve, and then identify 
the effect size estimate corresponding to that p-curve. 
Because the shape of p-curve is a function exclusively of 
sample size and effect size, and sample size is observed, 
we simply find the effect size d̂  that obtains the best 
overall fit. In the Appendix, we provide a detailed account 
(and R code) of how this is done.3

Selectively Reporting Significant 
Studies

As described above, scientists interested in estimating 
effect sizes must correct for the fact that nonsignificant 
findings are much less likely to be published than are 
significant findings. This fact has long been recognized 
and a variety of corrective techniques have been pro-
posed (for a review, see Rothstein, Sutton, & Borenstein, 
2005).

The most common technique is known as Trim and 
Fill (Duval & Tweedie, 2000a, 2000b).4 Although Trim 
and Fill is in common use, it rests on the unlikely 
assumption that the selective reporting of studies is 
driven by effect size rather than statistical significance.5 
That is, it assumes that the publication process sup-
presses the publication of small effects (regardless of 
significance) rather than nonsignificant results (regard-
less of effect size).6

However, publication bias in psychology (Rosenthal, 
1979; Sterling, Rosenbaum, & Weinkam, 1995) and other 
fields (Ashenfelter, Harmon, & Oosterbeek, 1999; Gerber 
& Malhotra, 2008) primarily involves the suppression of 
nonsignificant results. As shown below, when the publi-
cation process suppresses nonsignificant findings, Trim 
and Fill is woefully inadequate as a corrective technique. 
p-curve performs much better.7

We conducted simulations to examine how well 
p-curve corrects for the selective reporting of statistically 
significant studies, and contrasted its performance with 
that of Trim and Fill. Specifically, we simulated studies 
testing a directional prediction with a two-sided 
difference-of-means test, pooled all the statistically sig-
nificant studies with the predicted effect into a meta-
analysis that included about 5,000 studies, and, to capture 
the selective reporting of significant studies, we estimated 
the true effect size based on the statistically significant 
studies alone.

We estimated the effect size using three different 
approaches. First, we conducted a traditional fixed-effect 
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meta-analysis, computing the weighted average of 
observed effect sizes across the significant studies, with-
out any correction for selectively reporting studies. 
Second, we corrected this estimate using the Trim and 
Fill procedure (Duval & Tweedie, 2000a, 2000b). Third, 
we estimated effect size using p-curve.

As shown in Figure 2, we conducted these simulations 
under a number of conditions. Panel A reports results 
assuming that all studies within a meta-analysis have the 
same sample size (n = 20 per cell) and effect size (shown 
on the x-axis). Panel B reports results allowing for studies 
within a meta-analysis to vary in sample size between 

Fig. 1.  p-curve’s shape as a function of sample size and effect size. Expected p-curves for two-sample difference-of-means t tests, with n subjects 
per cell, where population means differ by d standard deviations from each other. Note that for a given level of power, p-curve is almost the 
same for every underlying sample-size and effect-size combination.20 Plotted results are obtained from noncentral t distributions (see Appendix 
for details).
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n = 5 and n = 35 per cell. In Panel B’s simulations, all 
studies within a meta-analysis had the same true effect 
size, and each meta-analysis included the same number 
of studies with each sample size.

The simulations in Panel C varied both sample size 
and true effect size across studies included in the same 
meta-analysis. For each simulated study, we first ran-
domly drew a true effect size from a normal distribution 
with σ = .2 and the mean indicated on the graph’s x-axis. 
We then drew observations from populations whose true 
means differed by that random effect while varying per-
cell sample size to be between n = 5 and n = 35, and we 
pooled the set of statistically significant results. All 

studies within a meta-analysis had the same average true 
effect size, and each meta-analysis included the same 
number of statistical significant studies with each sample 
size.

Figure 2 displays the results, revealing several impor-
tant facts. First, it shows the dramatic inflation of effect 
size generated by publication bias (Hedges, 1984; 
Ioannidis, 2008; Lane & Dunlap, 1978). The darker solid 
lines in the figure show that the average effect sizes of 
the subset of studies that are statistically significant are 
dramatically higher than the true effect sizes. Moreover, 
the estimates hardly vary as a function of true effect size. 
When samples are small, the subset of statistically 
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Fig. 2.  Impact of selectively reporting significant studies. Each marker reports an effect size estimate (Cohen’s d) based on a meta-analysis per-
formed on about 5,000 statistically significant simulated studies. In Panel A, all studies have 20 observations per cell and assume a fixed effect size. 
In Panel B, the same number of statistically significant studies with each sample size between n = 5 and n = 35 per cell are included in the meta-
analysis. Panel C is the same as Panel B, except effect sizes are drawn from a normal distribution with mean d, standard deviation σ = .2. Trim and 
Fill and p-curve estimates are based exclusively on p < .05 results.
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significant effect sizes contains almost no information 
about the true effect size.

Second, applying the Trim and Fill correction to these 
estimates does not make them meaningfully better. For 
example, when there was truly no effect (d = 0), Trim 
and Fill estimated the effect to be large, at least d = .65. 
When nonsignificant studies are not observed, the most 
popular corrective technique is not very corrective.

Third, in contrast to the other methods, p-curve fully 
corrects for the impact of selectively reporting studies. 
For example, in Panel A, we see that when the true effect 
size is d = 0, p-curve correctly estimates the effect to be 
zero, despite p-curve being based exclusively on observed 
estimates of d̂ > .64, with an average observed effect size 
of d̂ = .77. Panels B and C show that the accuracy of 
p-curve does not rely on homogeneity of sample size nor 
effect size. In all cases, p-curve is accurate and the other 
methods are not.8

The results from Figure 2 assess the performance of 
Trim and Fill when performed only on the subset of sta-
tistically significant findings, showing that it provides a 
minimal improvement over the naive average effect size. 
In Supplement 3, we show that adding nonsignificant 
findings to the set analyzed via Trim and Fill, even dou-
bling the total number of studies, does not noticeably 
improve the corrective abilities of Trim and Fill.

p-Hacking

Researchers not only selectively report studies, they also 
selectively report analyses within a study (Cole, 1957; 
Simmons, Nelson, & Simonsohn, 2011). For example, a 
researcher may run a regression with and without outli-
ers, with and without a covariate, with one and then 
another dependent variable, and then only report the sig-
nificant analyses in the paper. We refer to this behavior as 
p-hacking (Simmons, Nelson, & Simonsohn, 2012; 
Simonsohn et al., 2014).

p-hacking enables researchers to find statistically sig-
nificant results even when their samples are much too 
small to reliably detect the effect they are studying or 
even when they are studying an effect that is nonexistent. 
For this reason, existing methods for estimating effect 
sizes will be inflated, often dramatically, in the presence 
of p-hacking.

p-hacking biases p-curve’s effect size estimates as well, 
but it does so in the opposite direction, leading one to 
underestimate effect sizes. To understand why, consider 
the effects that p-hacking has on p-curve’s shape.

Because p-hacking leads researchers to quit conduct-
ing analyses upon obtaining a statistically significant find-
ing, p-hacking is disproportionately likely to introduce 
“large” significant p values into the observed distribution 
(i.e., p values just below .05). As a result, p-hacking 
reduces the right skew of p-curve (Simonsohn et  al., 

2014). Because smaller effect sizes are associated with 
less right-skewed p-curves, p-hacking causes p-curve to 
underestimate effect sizes.

To explore the effects of p-hacking on effect size esti-
mates, we simulated three common forms of p-hacking 
( John, Loewenstein, & Prelec, 2012; Simmons et  al., 
2011): achieving statistical significance by (a) data peek-
ing (collecting more observations if an initial sample of 
observations does not obtain p < .05), (b) selectively 
reporting which of three dependent variables to report, 
and (c) selectively excluding outliers.

All of the simulations explored mean differences 
between two conditions starting with 20 observations in 
each. We varied the true effect size across simulations. For 
each simulation, we estimated effect size in three ways: 
(a) by computing the average of all effects (including all 
significant and nonsignificant findings), (b) by applying a 
Trim and Fill correction to only the statistically significant 
effects, and (c) by using p-curve. We report further details 
of these simulations in the next section; readers may 
choose to skip ahead to the Results section.9

Details

Figure 3A shows the results of simulations of data peek-
ing. For each study, we first conducted a t test with n = 
20 observations per cell. If the result was significant, we 
“published” it; if it was not, we added 10 observations to 
each sample, thus increasing the per-condition sample 
size from 20 to 30, and conducted a new t test. If this 
second result was significant, we “published” it; if not, it 
remained nonsignificant and hence “unpublished.”

Figure 3B shows the results of simulations of selec-
tively reporting among three dependent variables corre-
lated with each other at r = .5. We conducted a t test on 
each of these dependent variables. Within a study, the 
first comparison to obtain significance was “published”; if 
all three t tests were nonsignificant, the study was 
“unpublished,” and the analysis yielding the lowest p 
value was the one used to compute the average effect 
across all of the studies.

Figure 3C shows the results of simulations of selectively 
dropping outliers further than two standard deviations 
away from the sample mean. For each study, we con-
ducted four t tests: one comparing both full samples, one 
dropping outliers from only the first sample, one dropping 
outliers from only the second sample, and one dropping 
outliers from both samples. Within a study, the first t test to 
obtain significance was “published.” If all four t tests were 
nonsignificant, the study was “unpublished,” and the anal-
ysis yielding the lowest p value was the one used to com-
pute the average effect across all of the studies.

For each of these simulated forms of p-hacking we 
pooled all the significant results and estimated the under-
lying effect size using the three methods described above: 
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the average of all studies regardless of significance, the 
estimate derived from applying the Trim and Fill correc-
tion to the significant studies, and p-curve’s effect size 
estimates.

Results

Figure 3 shows the results. First, we again see that Trim 
and Fill does not adequately estimate effect sizes when 
the publication process suppresses nonsignificant results. 
Second, we see that these forms of p-hacking cause the 

p-curve to underestimate effect sizes. Interestingly, 
p-hacking biases not only the published record, but the 
totality of evidence, which includes all studies whether or 
not they are likely to be published. Thus, even if a meta-
analyst were to gain access to every single study, elimi-
nating publication bias via “brute force,” p-hacking will 
cause effect sizes to be overestimated.

Thus, p-hacking will bias effect size estimates regard-
less of how effect sizes are estimated. Using traditional 
methods, p-hacking will bias effect sizes upwards; when 
using p-curve, p-hacking will bias effect sizes 
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Fig. 3.  Impact of p-hacking. Each marker reports an effect size estimate (Cohen’s d) based on a meta-analysis performed on large numbers of stud-
ies. The triangle dash-dot line plots estimates based on all simulated studies (what would be estimated by a meta-analyst that obtained all studies 
ever conducted), and the square dotted line and diamond dashed line plot estimates based on the statistically significant subset. Each panel simulates 
a different form of p-hacking. A: Adding 10 observations per-cell if p > .05 is not achieved with n = 20. B: Analyzing three different dependent vari-
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downwards. Because the relative magnitude of these 
biases is situation specific, it is not possible to make gen-
eral statements as to whether analyzing all studies ever 
conducted would outperform p-curve’s estimate based 
only on the statistically significant subset.

Note that the results from Figure 3 assume that unpub-
lished results remained p hacked (e.g., that observations 
that were dropped by a researcher but did not succeed in 
lowering the p value to p < .05, would also be excluded 
from the dataset given to the meta-analyst). If unpub-
lished results were free of p-hacking—for example, if any 
dropped observations were reintroduced before the data 
were meta-analyzed—then the bias present in the meta-
analysis of all conducted results would be reduced. It 
would still not be eliminated, because the published 
studies included in the meta-analysis are still biased 
upwards by p-hacking.

Precision

We have so far reported results from simulations involv-
ing large numbers of studies. We now turn to the issue of 
how much precision we may expect from p-curve’s esti-
mates when relying upon smaller sets of studies. Figure 4 
reports results from simulations that varied true effect 
sizes, the number of studies included in p-curve, and the 
sample sizes of those studies (with per-cell sample size 
of either 20 or 50). The markers indicate the median 
effect size estimate across simulations, and the vertical 
bars indicate one standard error above and below that 
median (i.e., the standard deviation of that estimate 
across simulations).

As one may expect, p-curve is more precise when it is 
based on studies with more observations and when it is 
based on more studies. Less obvious, perhaps, is the fact 
that larger true effects also lead to more precision. This 
occurs because p-curve’s expected shape quickly 
becomes very right-skewed as effect size increases, 
reducing the variance in skew of observed p-curves.

Demonstrations

In this section, we provide two demonstrations. The first 
relies on data from the “Many-Labs replication project” 
(Klein et al., 2014), in which 36 different labs around the 
world collaborated to run the exact same set of studies 
and reported all results regardless of statistical signifi-
cance. This provides a unique opportunity to assess the 
performance of p-curve in a realistic environment—using 
real studies, real dependent variables, and real 
participants—where we nevertheless observe all studies 
conducted, regardless of outcome.

The second demonstration revisits the meta-analysis of 
the popular psychology literature on choice overload 

(Scheibehenne, Greifendeder, & Todd, 2010). This exam-
ple demonstrates a situation in which p-curve and tradi-
tional meta-analytical tools arrive at different answers, 
suggesting different paths for what future empirical work 
on the topic ought to seek to accomplish.

Demonstration 1. Many Labs 
Replication Project

Klein et al. (2014) conducted replications examining 13 
different “effects” across 36 labs (data available from 
https://osf.io/wx7ck/). We can use these data to assess 
how well p-curve corrects for publication bias in a realis-
tic setting by comparing the effect size estimate we obtain 
from p curving only the subset of significant results to 
that obtained by averaging the results from all labs.

For this assessment of performance to make sense, 
and for the aggregate average to be a valid proxy for 
truth, we need to believe that the studies that worked and 
did not work were examining the same average effect—
that they differed only because of sampling error. 
Otherwise, if p-curve recovers one estimate, and the 
aggregate average another, we don’t know if p-curve per-
formed poorly, or if it is correctly indicating that the sig-
nificant and nonsignificant studies were investigating a 
different underlying effect. We thus focus on effects that 
proved homogeneous across the different labs.10

The two most homogenous effects were the sunk 
costs fallacy (as studied by Oppenheimer, Meyvis, & 
Davidenko, 2009) and the Asian disease problem (Tversky 
& Kahneman, 1981).11 Conveniently, these two effects 
were associated with very different replication rates. Only 
50% of labs obtained a significant result for the sunk cost 
fallacy, the lowest in the set of effects deemed “replica-
ble,” whereas 86% of the studies investigating the Asian 
disease problem were significant.12

Figure 5A shows the resulting p-curves. Both are right 
skewed, but Asian disease’s p-curve was more so. 
Whereas 83% of the Asian Disease Problem’s significant p 
values were below .01, only 31% of the Sunk Cost 
Fallacy’s significant p values were below .01. Figure 5B 
reports the resulting effect size estimates, comparing 
p-curve’s estimates to a naive estimate, computed by 
averaging the effect size observed across the significant 
studies, and an earnest estimate, computed by averaging 
the effect size across all studies, regardless of signifi-
cance. Because these results were not p hacked, we can 
safely assume that the earnest estimate represents the 
best estimate of the true effect size.13

The bias of the naive estimate is small for the Asian 
disease problem, as a large proportion of those studies 
were significant. It estimates a true effect size of .66, 
whereas the average across all studies was .60. 
Reassuringly, p-curve’s estimate agrees with the earnest 
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estimate, and thus corrects little when little needs to be 
corrected. The bias of the naive estimate for the sunk cost 
fallacy is much larger, estimating a true effect size of .46 
when the average across all studies was .31. Reassuringly, 
p-curve’s estimate again agrees with the earnest estimate 
and thus corrects more when more needs to be 
corrected.14

Demonstration 2. Choice overload

The choice overload literature in psychology examines 
whether an increase in the number of options available 
leads to negative consequences, such as a decrease in 
motivation to choose or satisfaction with the option that 
is ultimately chosen. Scheibehenne et  al. (2010) con-
ducted a meta-analysis combining published and unpub-
lished studies, obtaining an overall mean effect size of 

“virtually zero” (p. 409). This result implies that changes 
in choice-set size are inconsequential.

As Chernev, Bockenholt, and Goodman (2010) 
commented:

“… studies often include two conditions: one 
designed to show that the effect of the construct 
(e.g., choice overload) is present, and another one 
designed to document the directionally opposite 
(e.g., more-is-better) effect […] combining their 
effect sizes to test their average effect leads to a 
potentially biased interpretation of the underlying 
effects.” (p. 427, emphasis added)

In line with their (correct, in our view) observation, we 
split the studies analyzed by Scheibehenne et al. into two 
groups: one showing “choice is good” (positive 
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coefficient of choice set size), and the other showing 
“choice is bad” (negative coefficient). We estimated effect 
sizes separately for both sets of studies, effectively asking 
two conceptually and statistically independent questions:

(1)	 In studies showing that more choice is good, how 
good is choice?

(2)	 In studies showing that more choice is bad, how 
bad is choice?
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Fig. 5.  Demonstrations of p-curve. Panel A depicts p-curves for studies reported in the Many Labs replication project (Klein et al., 2014), and Panel 
C depicts p-curves for studies included in the meta-analysis of the impact of choice-set size on consumer outcomes (Scheibehenne, Greifendeder, 
& Todd, 2010). The latter are split into studies showing a positive effect and a negative effect, as suggested by a commentary on that meta-analysis 
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tools applied only to statistically significant studies (naive), to all studies available (earnest), and from applying p-curve to the significant subset. 
Vertical bars correspond to one standard error.
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The results are reported in Figure 5D. When we limit 
our estimation to statistically significant studies and aver-
age across them, both effect size estimates are sizeable; 
both get closer to zero when we add the nonsignificant 
studies. Interestingly, when we apply p-curves to the sig-
nificant findings, the choice-is-bad effect gets smaller, 
becoming effectively zero, whereas the choice-is-good 
effect gets larger. The right skewed p-curve for choice-is-
good and flat p-curve for choice-is-bad, depicted in 
Figure 5C, reveal why p-curve estimates move in oppo-
site directions for the two sets of studies.

Some of the error bars in Figure 5D are large. 
Particularly relevant is the standard error for the d̂ = −.07 
estimate for choice-is-bad. P-curve’s estimate is not con-
clusively saying the effect is 0; it is saying the best guess 
is close to zero, but that the data are consistent with 
practically and theoretically relevant effect sizes (of both 
signs) also.

Our interpretation of Figure 5D is the following. If we 
conduct traditional meta-analysis on the available evidence, 
we empirically verify the concern expressed by Chernev 
et  al. (2010): under predictable circumstances choice is 
good, and under predictable circumstances choice is bad. 
This would suggest that future work in the choice overload 
literature could safely and constructively consist of concep-
tual replications that seek to learn more about moderators 
and mediators of the choice-is-bad effect.

If we conduct meta-analysis based on p-curve, the 
conclusion is different. Yes, the evidence does support 
the (uninteresting) notion that under predictable circum-
stances choice is good, but it neither confirms nor denies 
the (much more interesting) notion that under predict-
able circumstances choice is bad. The conclusion based 
on p-curve suggests that future work should focus on 
examining if the basic phenomenon of choice-is-bad can 
indeed be reliably obtained. Properly powered direct 
replications of the original demonstrations are something 
top journals may be less inclined to publish based on the 
traditional meta-analysis result (“We already know this!”) 
but more inclined to publish based on our p-curve results 
(“We don’t really know the answer to this yet”). Thus, 
given the same data, p-curve and traditional meta-analysis 
can suggest very different paths forward.

Limitations

Limitation 1. Simple effects from 
attenuated interactions cannot be 
analyzed

The validity of p-curve rests on the assumption that a 
lower p value does not increase the likelihood of publica-
tion once it crosses the significance threshold. For exam-
ple, a significance criterion of .05 assumes that a p value 

of .008 would have been publishable if it had instead 
been .038.

Though this assumption usually holds, studies investi-
gating attenuated interactions often violate it. An attenu-
ated interaction hypothesis is one that predicts that an 
effect will be smaller under one condition than under a 
different condition. For example, the hypothesis that the 
effect of gender on height will be smaller for children 
than for adults is an attenuated interaction hypothesis. In 
this example, the unattenuated simple effect is the (larger) 
effect of gender on height for adults, whereas the attenu-
ated simple effect is the effect of gender on height for 
children.

Researchers interested in publishing attenuated inter-
actions need the interaction terms to be significant 
(Gelman & Stern, 2006). But for the interaction term to be 
significant, the (larger) unattenuated simple effect needs 
to have an even lower p value. For example, if the simple 
effect of gender on adults’ heights was associated with 
p  = .038, it is unlikely that the interaction would be 
significant. This means that the de facto significance cri-
terion for unattenuated simple effects in this design is 
smaller than for the other p values. As a result, the inclu-
sion of p values for unattenuated simple effects will result 
in a p-curve that overestimates effect sizes. The inclusion 
of only the interaction term p value would leave p-curve 
unbiased. As a result, for studies hypothesizing attenu-
ated interactions, we recommend never including results 
from simple effects in p-curve.

It is worth noting that this problem does not apply to 
studies predicting reversing interactions, involving an effect 
being observed under one condition but then the opposite 
effect being observed under a different condition. In this 
case, both simple effects may be included in p-curve.

Limitation 2. p-curve ignores 
nonsignificant results

Another limitation is that p-curve ignores information 
from nonsignificant studies (p > .05). Because this limits 
the sample size of studies under consideration, p-curve is 
more likely to provide a noisy effect size estimate. This is 
a necessary limitation of p-curve: Because we do not 
know what publication pressures occur above .05, we do 
not know what the distribution of p values should be 
above .05. Note that although excluding nonsignificant 
results makes p-curve noisier (less efficient), it does not 
make p-curve biased.

Limitation 3. Downward bias with  
p-hacking

As we discussed in some detail when presenting the 
results from Figure 3, p-hacking can bias effect size 
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estimates from p-curve downwards. In our simulations, 
however, this bias is mild enough to be ignorable.

Limitation 4. Moderation within meta-
analysis

In its current form p-curve estimates a single average for 
all studies included in it. To examine if a variable moder-
ates the effect size of interest across studies, then sepa-
rate p-curves would need to be estimated. For example, 
to examine if anchoring studies run in the lab have differ-
ent effect sizes than anchoring studies run outside the 
lab, one would perform one p-curve for lab studies and 
one p-curve for nonlab studies, rather than a single 
p-curve that includes a moderator variable. It seems likely 
that p-curve can be modified to incorporate moderation 
within a single analysis, but we have not explored that 
possibility.

Another Use of p-curve: Average Power

p-curve’s shapes is closely tied to statistical power, the 
probability that a study obtains a significant result. For a 
given statistical test, both power and p-curve depend 
exclusively on the size of the sample and the size of the 
effect. This means that p-curve can be used to estimate 
the average underlying statistical power of a set of stud-
ies. As with effect sizes, p-curve’s estimate of power will 
correct for the inflated estimates that arise from the privi-
leged publication of significant results.

Estimating the publication-bias corrected estimate of 
the average power of a set of studies can be useful for at 
least two purposes. First, many scientists are intrinsically 
interested in assessing the statistical power of published 
research (see e.g., Button et al., 2013; Cohen, 1962; Rossi, 
1990; Sedlmeier & Gigerenzer, 1989). But to carry out 
their calculations they have either (a) relied on arbitrary 
effect size assumptions (e.g., small, medium, and large) 
and asked how much power do the observed sample 
sizes have to detect effects of that size, or (b) computed 
the average observed effect size (which is inflated by 
publication bias and causes problems if effect size is het-
erogeneous) and computed the post-hoc power for that 
effect. With p-curve, those arbitrary assumptions are no 
longer needed, and we can estimate the actual underly-
ing power correcting for publication bias.

Second, published results often provide insufficient 
details to compute effect size. For example, effect size in 
mixed between-/within-subject designs depends on 
within-participant correlations across observations—a 
metric that is often not reported. Nevertheless, the true 
underlying power of the reported test statistic (e.g., F test 
in an analysis of variance) and hence the resulting p-curve 
is of course influenced by that parameter whether it is 

reported or not and, hence, so is the average power esti-
mated via p-curve. When aggregating results reported in 
insufficient detail, one may estimate average underlying 
power and then convert the result into an intuitive metric 
of effect size taking into account the underlying sample 
size.

User Guide

Upon identifying the effect of interest (e.g., the impact of 
a high vs. low anchor value on monetary valuations) and 
the selection criterion for studies to include (e.g., all stud-
ies that cite Chapman and Johnson, 1999, and use a mon-
etary dependent variable), the researcher must identify, 
for each study, the test statistic associated with testing the 
null that the effect of interest is zero. The set of all such 
tests is then submitted to a p-curve analysis, either using 
the R Code included in this article or the online web-app 
available at www.p-curve.com.

p-curve assumes these tests are statistically indepen-
dent from one another. If multiple results from the same 
participants are reported in a paper, only one of them 
may be included in a given p-curve. If only one of the 
results is pertinent to the meta-analysis then the decision 
is easy: Only the pertinent test is selected.

For example, if an anchoring study presented partici-
pants with both a high and a low anchor and then asked 
them to separately value both a coffee mug and a pen, 
then a meta-analyst only concerned with the impact of 
anchors on mugs would only include the mug result.

If multiple results are pertinent to the meta-analyst’s 
question, then a decision must be made. For example, if 
both the pen and mug were relevant to the question of 
interest to the meta-analysis, then p-curve may include 
either the test statistic associated with an analysis of the 
mug, with an analysis of the pen, or with an analysis of 
a composite of the mug and the pen (e.g., the averaged 
or summed ratings of the mug and pen). But p-curve 
can never include results from more than one of these 
analyses. Importantly, p-curve should also never include 
the average p value of multiple tests. For example, if the 
anchoring effect for coffee mugs was t(38) = 2.12, p = 
.04 and the anchoring effect for pens was t(38) = 2.43, 
p = .02, p-curve should not include the average p value, 
p = .03, nor the p value associated with the average test 
statistic, p = .028. It should include either p = .02 or p = 
.04.15,16

When choices among multiple tests must be made, we 
recommend adhering to a prespecified selection rule 
(e.g., the test reported first) and then computing and 
reporting the result obtained under a different rule (e.g., 
the test reported last).

As implemented here, all test results entered into 
p-curve are assumed to be either examining effects of the 
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same sign (e.g., all significant effects in p-curve show that 
anchoring occurs, and none show that the reverse of 
anchoring occurs) or that the sign of the effect is not rel-
evant (e.g., when computing average statistical power 
across heterogeneous findings). If neither of these condi-
tions is met, two separate p-curves should be conducted, 
one for positive effects and one for negative ones.17

For scientific results to be interpretable, it is imperative 
that researchers disclose how they resolved ambiguities 
surrounding the collection and analysis of data (Simmons 
et al., 2011). For p-curve users in particular, this is easily 
achieved by supplementing their explicit identification of 
a study selection rule with a p-curve disclosure table 
(Simonsohn et al., 2014).

To examine the impact of a discrete moderator on 
effect size, the simplest way to proceed is to split up the 
studies into different subgroups (e.g., studies performed 
in the United States make up one subgroup, studies per-
formed outside the United States make up another) and 
then p-curve is applied separately to each group, obtain-
ing a separate effect size estimate for each subgroup. In 
its current implementation, p-curve does not allow for 
the analysis of continuous moderators (see the Limitations 
section).

Overview of Supplementary Materials

The Supplementary materials include the following 
sections.

1.	 Robustness of p-curve to data that are not nor-
mally distributed

2.	 Robustness of p-curve to heterogeneity of effect 
size

3.	 Trim-and-Fill performance when some p>.05 are 
observed

4.	 Alternative loss functions (to the one from the 
appendix)

5.	 R-Code for every result in this article (also avail-
able here: http://www.p-curve.com/Supplement/
Rcode)

Conclusions

The selective publication of significant studies and anal-
yses leads the published record to overestimate the size 
of effects. We have shown that one can use the distribu-
tion of significant p values, p-curve, to easily and effec-
tively estimate effect sizes that correct for the selective 
reporting of studies, vastly outperforming the most 
commonly used alternative, Trim and Fill. p-curve also 
outperforms existing methods when researchers selec-
tively report analyses—when they p hack—but for many 
forms of p-hacking it underestimates true effect sizes. 

However, the presence of p-hacking biases all known 
methods of effect size estimation, even when one aver-
ages across every study ever conducted. Overall, p-curve 
seems to be the best tool for estimating effect size when 
the publication process predicts statistically significant 
results.

Technical Appendix: Approach and 
Algorithm for Estimating Effect Size 
Using p-curve

The goal is to determine the underlying effect size that 
leads to an expected p-curve that best fits the observed 
p-curve. This requires three steps: (a) linking underlying 
effect size with expected p-curves; (b) defining a loss 
function, a metric of how well a given expected p-curve 
fits the observed p-curve; and (c) finding the effect size 
that minimizes that loss function.18

A1. Linking effect size with expected p-curve

We assume here familiarity with noncentral distributions. 
For most readers that’s a terrible assumption, but it can 
be remedied by consulting Supplement 1 in Simonsohn 
et al. (2014).

For simplicity, we focus on independent two-sample 
difference of means t tests performed on samples of the 
same size (n). As an introduction, let’s go over how we 
constructed Figure 1. The top left panel shows the 
expected p-curve when n = 20 and d = .4164 (shown as 
.42). To obtain that expected p-curve, we first identify the 
critical t values that lead to p = .01,.02….05 with a degree 
of freedom of 38.

Using R syntax, this involves:

x5 = qt(.975,df = 38) 
x4 = qt(.98, df = 38)
x3 = qt(.985,df = 38)
x2 = qt(.99, df = 38)
x1 = qt(.995,df = 38)

For example, x5 = 2.0244, which means that t(38) = 
2.0244 leads exactly to p = .05 (for a two-sided test).

Next, we rely on the noncentral student distribution to 
see how likely one is to obtain t values more extreme 
than each of x1, x2…x5. For the parameters above, n = 
20, δ = .4164, This involves using the noncentrality param-

eter ncp = n
2 δ = 20

2 .4164
Starting with x5 (again, the lowest t value that leads to 

a statistically significant result), we compute, in R-syntax 
again)

1-pt(x5,df=38,ncp=sqrt(20/2)*.4164) =.25
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That is the probability of obtaining t ≥ 2.0244, and hence 
p ≤ .05 when n = 20 and δ = .042—it is, hence, the statisti-
cal power of the test. There is a 25% chance of obtaining 
a statistically significant result with a study of those char-
acteristics. The top-left panel of Figure 1 identifies what 
share of 25% of tests will be p < .01, .01 < p < .02, etc. 
Let’s determine what share of 25% of tests will be p < .01:

1-pt(x1,df=38,ncp=sqrt(20/2)*.4164)

We get: .094
This means that with n = 20, there is a 9.4% chance of 

obtaining p < .01 when δ = .42.
Among all attempted studies, 25% are p < .05 and 9.4% 

are p < .01. Therefore, the share of significant results that 
are p < .01 is 38% (9.4/25; see Fig. 1). Proceeding analo-
gously with x2, x3, and x4, we obtain the rest of the plot-
ted numbers: the histogram version of p-curve.

For estimating effect size we treat p-curve as the con-
tinuous distribution that it is. We proceed analogously, 
but we do not limit ourselves to the five discrete points 
x1–x5; instead, we create a function that maps every pos-
sible statistically significant t value to the probability of 
obtaining a t value at least as large. This is effectively the 
p value of the p value, which we referred to as the pp-
value (Simonsohn et al., 2014).

For t value i, ti, the probability of observing at least as 
large a significant t value is:

pp ti prob t t df  ncp 5i( ) = > <( )| , , .p 0

It is useful to get p < .05 out of the conditional. Let’s 
define,19

power prob 5 df ncp= <( )p . | , .0

Then

pp t prob t t df ncp power poweri i( ) = >( ) −( )| , /

pp(ti), then, is the cumulative distribution function (c.d.f.) 
of p-curve, a function mapping sample and effect size 

onto expected p-curve. Because we observe sample size, 
it effectively maps effect size onto expected p-curve.

A2. Defining a loss function

For every candidate effect size di, then, there is a pp(t|di) 
function that gives every possible t value a probability of 
observing at least as extreme a value. When di = δ (when 
the candidate effect size equals the true effect size), 
pp  values will be distributed uniformly for reasons 
entirely analogous to why p values are distributed uni-
formly under the null (which we explain in the main 
text).

In light of this, we define how well a given candidate 
effect size di fits the data—how well the expected p-curve 
fits the observed p-curve—by assessing how close to a 
uniform distribution the set of observed pp values are. 
Many techniques exist to compare empirical with 
expected distributions—we rely on the robust and simple 
Kolmogorov-Smirnov (KS) statistic, which computes the 
maximum observed gap between the two c.d.f.s. The big-
gest gap, often represented by D, has a known asymp-
totic distribution that is used to convert the test into the 
KS-test p value, but we do not need this additional step. 
We simply use D as the metric of fit; as the D value 
increases, less of the observed p-curve is captured by the 
expected p-curve. D has an intuitive representation, if 
D  = .4, then the biggest observed gap in (cumulative) 
p-curve is 40%. For example, 78% of p values are sup-
posed to be p < .041, but only 38% of them are: 78% − 
38% = 40%. In Supplement 4, we discuss alternatives to 
the KS test for measuring fit.

A3. Minimizing the loss

The last step consists of finding the candidate effect size 
that minimizes D. We rely on R’s optimize() command for 
this, but we first exhaustively search the plausible space 
of effect size so as to (a) reduce the odds that optimize() 
lands on a local rather than global minimum and (b) pro-
vide a diagnostic plot of how well different effect size fit 
the observed p-curve. See R code below.

# R-CODE for estimating effect size via p-curve – written by Uri Simonsohn 
#Define the loss function
loss=function(t_obs,df_obs,d_est) {	 #Syntax t_obs: vector of t-values, df_obs of degrees of freedom, d_est: candidate d 
  t_obs=abs(t_obs) 	 #Take absolute value of t-value (p-curve assumes same sign and/or sign does not matter)
  p_obs=2*(1-pt(t_obs,df=df_obs)) 	 #Compute p-values of each t in t_obs so as to keep only p<.05 results
  t.sig=subset(t_obs,p_obs<.05)	 #Significant t-values
  df.sig=subset(df_obs,p_obs<.05)	 #d.f. associated with significant t.values
  ncp_est=sqrt((df.sig+2)/4)*d_est	 #Compute noncentrality parameter for that sample size and candidate effect size
  tc=qt(.975,df.sig) 	 #Compute critical t-value to get p=.05
  power_est=1-pt(tc,df.sig,ncp_est) 	 #Compute power for obtaining that t-value or bigger, given the noncentrality parameter
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Notes

1. The two sample t test with 38 degrees of freedom obtains p = 
.05 if t(38) = 2.024. We can find the corresponding effect size for 

t = 2.024 by recalling that t = 
M M

SD n
2 1

2

−
/

 and d̂  = M M
SD
2 1− , so d̂  = 

t 2 / n  . Needing t ≥ 2.024 for statistical significance is hence 
mathematically equivalent to needing d̂  ≥ 2.024 2 20/  = .64.
2. See the User Guide section for more details regarding what p 
values may and may not be included in p-curve.
3. For ease of exposition, throughout the article we focus on 
differences of means t tests and, hence, the t distribution.
4. Our assessment of Trim and Fill being the most commonly 
used corrective technique is informed by two sources. First, our 
casual observation indicates that, in psychology, review articles 
that correct for publication bias do so exclusively using Trim 
and Fill. Second, as of May 2014, Google Scholar indexes the 

  p_larger=pt(t.sig,df=df.sig,ncp=ncp_est)	 #Probability of obtaining a t-value bigger than the one that is observed (this is a vector)
  ppr=(p_larger-(1-power_est))/power_est 	 #Conditional probability of larger t-value given that it is p<.05, pp-values
  KSD=ks.test(ppr,punif)$statistic 	 #Kolmogorov Smirnov test on that vector against the theoretical U[0,1] distribution
  return(KSD) }

#Find the best fitting effect size (this also generates a diagnostic plot)

plotloss=function(t_obs,df_obs,dmin,dmax) 	 #Syntax, same as above plus: dmin/dmax: smallest/biggest d considered,
  { loss.all=c()	 #Vector where results of fit for each candidate effect size are stored
    di=c()	 #Vector where the respective effect sizes are stored
    for (i in 0:((dmax-dmin)*100)) {	 #Do a loop considering every effect size between dmin and dmax in steps of .01
      d=dmin+i/100 	 #What effect size are we considering?
      di=c(di,d) 	 #Add it to the vector of effect sizes
      options(warn=-1) 	� #turn off warning because R often generates warnings when using noncentral pt() and 
qt() that are inconsequential (they involve lack of precision at a degree where precision lacks practical relevance)
  loss.all=c(loss.all,loss(df_obs=df_obs,t_obs=t_obs,d_est=d)) #add loss for that effect size to the vector with all losses
  options(warn=0) 	  #turn warnings back on
    }
  imin=match(min(loss.all),loss.all) 	 #Find the attempted effect size that leads to smallest los overall
  dstart=dmin+imin/100 	 #Counting from dmin, what effect size is that?
 � dhat=optimize(loss,c(dstart-.1, 

dstart+.1), df_obs=df_obs,t_obs=t_obs)	 #Now optimize in the neighborhood of that effect size

#PLOT RESULTS

 � plot(di,loss.all,xlab=”Effect size\nCohen-d”, ylab=”Loss (D stat in KS test)”,ylim=c(0,1), main=”How well does each effect size fit? 
(lower is better)”)

  points(dhat$minimum,dhat$objective,pch=19,col=”red”,cex=2)	  #Put a red dot in the estimated effect size
#Add a label
  text(dhat$minimum,dhat$objective-.08,paste0(“p-curve’s estimate of effect size:\nd=”,round(dhat$minimum,3)),col=”red”)
  return(dhat$minimum)
    }
#Example 
  t_obs= c(1.7, 2.8, -3.1, 2.4) 	 # include one p > .05 and one negative t-value to highlight how we treat those
  df_obs=c(44, 75, 125, 200)
  plotloss(t_obs=t_obs,df_obs=df_obs,dmin=-1,dmax=1)
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original Trim and Fill article as having 1,504 citations. Articles 
introducing other correction tools reviewed by Hedges and 
Vevea (2005) have about 50–150 citations. Thus, a rough esti-
mate is that Trim and Fill is at least 10 times as popular as its 
competitors.
  5. With this method, a meta-analyst explores the relation 
between the sample size and effect size of a set of studies, 
looking to see whether some studies appear to be missing as a 
result of publication bias. For example, if a very large-sample 
study estimates an effect size to be d̂ = .40, and most of the 
smaller studies estimate an effect to be greater than d̂ = .40, 
then it is presumed that smaller studies estimating effects less 
than d̂ = .40 were unpublished. Trim and Fill is an algorithm 
that trims (i.e., eliminates) some real studies, and fills in (i.e., 
introduces) some non-real ones, seeking to obtain a final set 
of studies in which there would be a similar number of small 
sample studies above and below d̂ = .40
  6. Duval and Tweedie (2000a) write “Our key assumption is 
that the suppression has taken place in such a way that the […] 
most extreme negative values have been suppressed” (p. 91).
  7. Hedges and Vevea (2005) reviewed additional publica-
tion bias correction tools that, as we do here, assume selective 
reporting based on p values. The approach most similar to ours 
is by Hedges (1984). Two key differences are that his approach 
does not eliminate bias due to selective reporting of studies 
(see his Fig. 4), and cannot be applied when all effects are of 
the same sign (Hedges & Vevea, 2005, p. 152).
  8. To provide a more intuitive treatment of heterogeneity than 
that captured in Figure 2C’s simulations, we performed addi-
tional simulations where half the studies had one true under-
lying effect size (d1), and the other half had a different true 
underlying effect size (d2). We then applied p-curve to that 
pooled set of statistically significant findings and verified that 
the estimated effect size, d̂ , corresponded to the average of 
the two true effect sizes. For example, if we set d1 = d2 = .4, 
then p-curve estimates d̂ = .4. But p-curve also estimates d̂ =.4 
if we set d1 = .3 and d2 = .5, or d1 = .2 and d2 = .6, such that 
the average true effect is .4. p-curve is robust to heterogeneity 
in effect size across studies (see Supplement 2 for more details 
and additional variations).
  9. Readers wanting even more details can see the R code 
behind Figure 3 in Supplement 4.
10. Note that we already showed p-curve to be robust to het-
erogeneity in effect size. We focus on homogenous studies not 
to ensure that p-curve is valid, but to ensure our benchmark 
for truth is.
11. Their I2 statistic across labs, which measures the percent of 
variance explained by lab heterogeneity (Higgins, Thompson, 
Deeks, & Altman, 2003), was <10% for sunk costs, and <.01% 
for Asian disease. Neither of the effects were associated with 
significant differences between American and non-American 
labs, nor between laboratory and online methods of data col-
lection (all ps > .29; see Table 3 in Klein et al., 2014).
12. The sunk cost problem consisted of a question asking par-
ticipants to rate their willingness to attend a match of their 
favorite team on a freezing cold day either if they had paid 
for a ticket or if it was free (for earlier studies of this effect, 
obtaining bigger effects probably due to more precise word-
ing, see Arkes & Blumer, 1985; Thaler, 1980). The Asian disease 

problem consisted of a binary hypothetical choice problem that 
presented participants with the same information using either a 
gains or a losses frame (Tversky & Kahneman, 1981).
13. Two of the 36 labs had disproportionately large sample 
sizes, N > 1,000. To make things more interesting, the results 
reported in the main text exclude those two labs so that there 
is more variability (we use 34 different labs). Results with those 
two labs are reported in the next footnote.
14. Figure 5 was constructed excluding the two largest labs. 
With them included, the effect size estimates for the sunk cost 
fallacy are d̂ naive = .33, d̂ Earnest = .28, d̂ p-curve = .28. For the 
Asian Disease these are d̂ naive = .63, d̂ Earnest = .60, d̂ p-curve = .60. 
We deemed these results less interesting because the very large 
samples greatly reduce bias in the subset of p < .05 studies.
15. The average test statistic is 

2 12 2 43
2

. .+
 = 2.28, leading to 

t(38) = 2.28, p = .028.
16. The reason not to include average p values nor average 
test statistics is that they are not uniform under the null. For 
instance, as one averages more and more p values the result 
converges to .5 (rather than to a uniform distribution of 0 to 1).
17. It is easy to specify p-curve in a way that allows for effects 
of opposite sign to be included simultaneously, but we decided 
against it. The reason is that it is quite unlikely that a true 
underlying effect leads to significant results of opposite sign. 
The probability of getting a p < .05 effect of the “wrong” sign 
is necessarily smaller than 2.5% (that’s the probability if d = 
0). If a study is powered to just 20%, the odds are less than 1 
in 1,000, and if a study is powered to 50%, the odds are less 
than 1 in 11,000. If statistically significant opposite sign effects 
are observed, separate analyses for those d̂  > 0 and d̂  < 0 are 
almost surely more meaningful and informative. Our choice-
overload demonstration exemplifies how splitting effects by 
sign can lead to insightful inferences.
18. In the Appendix, we explain the procedure and provide 
R Code for a difference of means t test. Because the map-
ping between a test results (e.g., t value) and effect size (e.g., 
Cohen’s d) is different for each design, users of p-curve will 
need to either create custom programs for different designs 
(e.g., interactions, regressions, mixed designs), or more 
conveniently, use p-curve to estimate average power and 
then convert the average power to a measure of effect size. 
Supplement 4 includes the R program that computes average 
power.
19. Recall that we assume all t values are of the same sign, 
so we do not count significant effects of the wrong sign into 
power calculations.
20. Differences across p-curves for the same level of power 
depend on the degrees of freedom of the t test (on how thick 
the tails of the t distribution are), and converge to the normal 
distribution’s p-curve as the degrees of freedom increase.
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