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Abstract 

We re-analyze data from four recent papers to demonstrate that the traditional approach for probing 

interactions—linear regression followed by Simple-Slopes ("spotlight") or the Johnson-Neyman 

procedure ("floodlight")—can lead to qualitatively incorrect conclusions when true relationships 

are not linear. Building on proposals to use GAMs (Generalized Additive Models) to probe 

interactions, we introduce the Johnson-Neyman 2.0 procedure (JN2). This procedure involves: (1) 

using GAMs to probe an interaction of interest, and then (2) verifying the key conclusion of interest 

with a t-test or linear regression run on the subset of relevant data. For example, if a GAM 

determines an experimental manipulation has a negative effect for moderator values 0.67 SD below 

the mean, a t-test is run only among those observations to verify the negative effect.  
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Introduction 

Interactions, where a variable moderates the association between two (or more) other 

variables, are commonly examined in marketing research. Researchers ask questions like: Does a 

consumer trait or a product characteristic make people more price sensitive? After testing 

interactions, after determining whether there is or there isn't one, it is common to 'probe' them, to 

assess the effect size of the variable of interest for different moderator values, in one of two ways: 

(1) estimating the relationship between the focal predictor x (e.g., price) and the dependent variable 

y (e.g., quantity purchased) at different values of the moderator (e.g., for participants at +1 SD on 

a "spendthrift-tightwad" scale) or (2) assessing for which moderator values the effect of the focal 

variable is positive vs. negative, or statistically significant vs. not. These approaches are 

respectively known as Simple Slopes (Aiken and West 1991) or "spotlight" analysis, and the 

Johnson-Neyman procedure or "floodlight" analysis; see Spiller et al. (2013). 

 The technology that is currently relied upon for studying interactions involves estimating 

a linear regression that includes the product x·z as a predictor (e.g., y = a + bx + cz + dx·z), and 

then probing the interaction based on the regression coefficients associated with x (𝑏̂ and 𝑑̂). This 

technology is about 90 years old, dating back at least to Johnson and Neyman (1936).  

  A significant limitation of (linear) probing is that the results are too sensitive to the 

arbitrary and often false assumption that all effects in the model are linear. This concern is not new. 

Even in the original paper by Johnson and Neyman (1936) they write "We do not think it entirely 

correct to assume that the regressions . . .  are represented by planes. On the contrary we see good 

reasons to assume that these regressions are skew. However, we assume linearity as a first 

approximation, hoping that in the future we shall be able to consider the problem more fully 
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following the same method of approach." (p.83; bold added). We may not be Johnson and Neyman, 

but fortunately, we do live in their future.  

Returning to our opening example, linear regression assumes that the relationship between 

price and quantity bought is constant, forming a perfectly straight line. However, both psychology 

(e.g., through diminishing sensitivity and satiation) and economics (e.g., through diminishing 

marginal utility) suggest that this relationship is unlikely to be linear. For instance, if the price of 

tacos drops from $9 to $7, Alex may buy 5 instead of 4 tacos. Yet, if the price drops further to $5 

and then $3, we do not expect Alex to continue buying one more taco for every $2 decrease (e.g., 

buying 6 instead of 5 at $5, and 7 instead of 6 at $3). At some point Alex is ready for dessert 

regardless of the price of the next taco. We should be skeptical of a perfect straight line connecting 

price and quantity purchased. We should be skeptical of perfect straight lines connecting any two 

variables. 

 A natural solution to avoiding the bias that arises from assuming linearity is to not assume 

linearity, relying on more flexible models like Generalized Additive Models (GAMs). Though 

GAMs are rarely used in social science, they have existed for nearly four decades (Hastie and 

Tibshirani 1987). Unlike linear regressions, GAMs estimate rather than assume the functional form 

of the relationship between variables in the model—allowing them to capture many kinds of non-

linear effects while incorporating a penalty for overfitting.  

 The added flexibility obtained with GAMs, however, comes at a cost to interpretability. 

While linear regressions produce a single interpretable coefficient for each predictor, GAMs 

provide many uninterpretable coefficients for each predictor that, when combined, produce the 

estimated functional form for such predictor. GAMs require visualizations to be interpreted. This 

means that there are no "regression tables" with GAMs, no simple numerical summaries that allow 
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researchers and readers to determine whether an expected pattern is or is not observed. In addition, 

from questions we have received when presenting this work, and conversations with colleagues 

more generally, we know that there are concerns about possible overfitting, and sensitivity of black 

box results to unknown assumptions. 

In this paper, we propose addressing these limitations in the GAM probing of interactions 

with a procedure that combines the interpretability and transparency of linear models, with the 

robustness and flexibility of GAMs. We refer to it as Johnson-Neyman 2.0 (JN2). It involves three 

steps: First one probes an interaction using GAM, rather than linear regression,  generating a figure 

that depicts either GAM Simple Slopes or the GAM Johnson-Neyman procedure (Simonsohn 

2024). Second, one identifies the critical patterns in the figure that support the main conclusions 

of the probing exercise (e.g., regions of moderator values where the effect of the manipulation 

shows qualitatively different magnitudes or reverses sign). Third, one analyzes the subset of the 

data for which a qualitative conclusion is obtained, relying on traditional tools like the t-test or 

linear regression.  

For example, let's say the GAM Johnson-Neyman procedure indicates that the effect of a 

randomly assigned manipulation becomes negative for moderator values lower than 0.67 standard 

deviations below the mean. With JN2, one then runs a t-test on that subset of the data, obtaining a 

single point estimate (the difference of means) and associated p-value. JN2 provides a familiar and 

evaluable confirmation of the identified pattern. Similarly, if the key conclusion were that as the 

moderator values keep dropping past 0.67 SDs, the effect of the manipulation keeps getting larger 

in magnitude, one runs a regression on that subset of data and establishes whether the slope for the 

moderator is significantly negative as expected, obtaining again a single interpretable point 

estimate (the slope) and p-value.  



5 

 

JN2 provides three valuable contributions to the existing proposal of relying on GAMs for 

probing interactions (Simonsohn 2024). First, interpretability: JN2 provides a single interpretable 

numerical summary instead of intricate graphical depictions, making empirical results 

straightforward to communicate. Second, accessibility: JN2 serves as a transition tool that allows 

researchers to switch from linear to GAM probing while still relying on a tool that all readers can 

understand and critically evaluate. Third, robustness: JN2 addresses the skepticism toward 

unfamiliar black-box tools like GAMs by verifying results using a familiar tool.  

The most notable limitation of the JN2 approach we propose arises with non-experimental 

data, or more specifically, when x and z in the x·z interaction could be correlated. In that case 

linear regressions can be invalidated if the underlying data are not linear (see e.g., Ganzach 1997), 

and this is also true when the regression is run on a subset of the data, as is done with JN2.  

 We make the case for GAM probing in general, and JN2 in particular, by revisiting four 

recently published marketing articles, where authors relied on linear Simple Slopes and/or linear 

Johnson-Neyman procedures to probe interactions. After reproducing the published results with 

the original data, we demonstrate how the inferences based on linear probing of the interactions 

are partially or entirely reversed when the arbitrary linearity assumption is relaxed.  

In Example 1 an effect that supposedly is present for most values of the moderator, is 

actually only present for (extreme) high values of it. In Example 2 the linear estimates bear almost 

no resemblance to reality. In Example 3 an effect that supposedly reverses for low moderator 

values appears to merely attenuate. Finally, in Example 4 the linear model underestimates the 

magnitude of the overall interaction, and obtains a statistically significant effect of the wrong sign. 

This fourth example is useful also for illustrating the limitations of JN2 with observational data. 
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Part of the appeal of the currently universally-used linear approach is its simplicity. 

Fortunately, switching to JN2 will not increase the difficulty of probing interactions for 

researchers. We have created an R package, `interacting`, which probes interactions with GAM 

and produces ready-to-publish figures in just one line of code. The follow-up JN2 can then be 

conducted using familiar tools—traditional t-tests and linear regression commands—performed 

on data subsets.  

 

An intuitive description of GAM estimation 

 In this section, we explain GAMs in broad terms so that readers can gain a basic 

understanding. We do not delve into details that are aptly covered in various statistics articles.1  

GAM vs. Regression  

GAMs resemble linear regressions in that they estimate the relationship between a 

dependent variable and a set of independent variables. But, while regressions assume all predictors 

are linearly associated with the (sometimes latent) dependent variable, GAMs estimate the 

functional forms for the relationship with each independent variable.2   

 In a canonical interaction model, for instance, instead of estimating four coefficients, 

a,b,c,d in the linear regression, y = a + bx + cz + dx·z, a GAM estimates functional forms for x 

and z and their interaction, as in y=f1(x)+f2(z)+f3(x,z). A GAM estimates f1, f2, and f3 combining a 

series of base functions (e.g., log, polynomials, etc.), and allowing that combination to change for 

 
1 Readers wishing to learn more about GAMs may consult the introduction by Simonsohn (2024), the 

textbook by Wood (2017), the seminal article on GAMs by Hastie and Tibshirani (1987), or the 

introductory article by Beck and Jackman (1998). 
2 Note that a regression that includes non-linear terms, e.g., y=ax+bx2+e, is still linear in the sense that the 

effect of an increase of x2 by 1 is always 𝑏̂.  
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different x and z values. So, for instance, the GAM estimation may result in fitting a log function 

in the lowest third of the x-range, fitting a combination of polynomials for higher values of x, and 

a flat horizontal line for higher values still.  

To avoid over-fitting, GAMs include a penalty for wiggliness in the estimated function, 

seeking smooth rather than rugged fits to the data. In practice this means that if a function is 

summarized "well enough" by a linear model, GAM will output a linear model, but if it requires a 

polynomial, or a log, it will output that instead. Indeed, later in the article (Figure 7) we show that 

if the true model with an interaction is fully linear, probing the interaction with a linear regression 

or with GAM leads to similar results. 

 As mentioned in the introduction, the main downside of GAMs is that they do not produce 

few interpretable coefficients, instead they produce many uninterpretable coefficients (loosely 

speaking, the weights given to each underlying base function to form the estimated functional 

form).  This interpretability challenge seems to have prevented GAM from becoming a main tool 

in the social science toolbox so far. This challenge can be tackled in two ways.  

First, as proposed by Simonsohn (2024), one can probe estimated GAMs in a manner 

analogous to probing interactions in linear models. This involves using the fitted GAM model to 

calculate predicted values for the dependent variable and predicted marginal effects for a given 

combination of predictor values. These predicted values can then be visualized, similar to how 

linear Simple Slopes and linear Johnson-Neyman are currently plotted for linear models—except 

that lines are replaced with curves. Second, building on this proposal, and following the JN2 

procedure we propose here, the key findings identified in these figures can be verified and 

numerically summarized into a single estimate and p-value using traditional statistical tools such 

as t-tests and linear regression. 
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Illustration of GAM estimation  

We report results from a simple simulation below to illustrate the greater accuracy of GAM 

models. We produced 1000 observations for the random variable x (uniform 0 to 100) and consider 

three possible functional forms, ranging from linear to non-monotonic. Figure 1 shows that while 

the regression line is perhaps a useful summary of the average association, only GAM provides an 

adequate characterization of the relationship between x and y overall, and a precise estimate of the 

effect of x on y for specific values of x. For example, in the second panel, the linear model misses 

the fact that once x reaches 50, it no longer impacts y, and in the third panel it misses the fact that 

the effect of x on y switches sign within the observed data.  

 
Figure 1. Comparing Model Adequacy: GAM vs. Linear Regression. 
The figure depicts a single simulation of 1000 observations where x~U(0,100). The figure shows that when 

the true model is linear GAM recovers a linear model, but when it is not, it accurately captures the 

alternative functional forms. In all models, normal random error with the same SD as that produced by x 

on y, is added to y. 
Code to reproduce figure: https://researchbox.org/2859/1 (enter code QAMDS) 

 

These kinds of shortcomings for the linear model are not just a theoretical possibility. In 

the sections that follow, we present examples from recently published marketing papers exhibiting 

precisely these kinds of shortcomings. In our first example we also provide an explanation for how 

https://researchbox.org/2859/1
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one obtains Simple Slopes and Johnson-Neyman estimates from a GAM, aided by the concreteness 

of the data at hand. 

Example 1: Misplaced Moderation 

 Mecit, Shrum, and Lowrey (2022) propose that describing a disease with feminine 

grammatical terms, rather than masculine grammatical terms, leads to lower danger-perception of 

that disease. They focus on Spanish and French speakers' perceptions of dangers associated with 

COVID, because in those languages COVID can be described with either grammatical term. For 

instance, in French one may say "la" COVID (feminine) or "le" COVID (masculine).3 

In their Study 3, N=305 French speakers were randomly assigned to have the disease 

described with the feminine vs. masculine terms and indicated how dangerous COVID-19 seemed 

to them. They also completed a 24-item gender stereotype questionnaire to measure "chronic 

gender stereotyping" (p. 321), which was used as a moderator in the analysis.  

The authors find a significant interaction between the manipulation and chronic gender 

stereotyping (p = .0015), which they then probed with linear Simple Slopes and the 

Johnson‑Neyman procedure. The latter indicated that the effect of "Le" vs "La" was significant for 

participants with a chronic gender stereotype average above 0.53.4 In Figure 2, we reproduce their 

linear Simple Slopes, followed by our GAM based probing. 

Before interpreting these results, we use the figure to remind readers of what Simple Slopes 

and Johnson-Neyman involve for linear procedures, and explain how they extend to GAM 

procedures. Linear Simple Slopes, like those in Figure 2A, are computed by estimating a linear 

 
3 The Académie française (2020) determined that the proper grammatical term is "La COVID" rather than "Le 

COVID". After this determination, formal sources tended to use "Le COVID" while "La COVID" remained in use in 

informal settings. Thus, Le COVID is a masculine and informal term, and La COVID is a feminine and formal term. 
4 The authors report p < .001 for the interaction (p.321), but re-analyzing their data we obtain p = .0015. 

The authors report only the point at which the effect is significantly positive, but the effect is also 

significantly negative for moderator values below -1.65. 
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regression like y=a+bx+cz+dx·z, and then predicting y (in this example, Danger Perception), for 

a given x (in this example, "Le" vs "La"), for different z values (in this example, Chronic Gender 

Stereotypes). The way GAM Simple Slopes are computed is analogous. One estimates a GAM, 

and uses it to predict y, for a given x, for different z values. The key difference is that GAM does 

not force the lines to be straight (Figure 2B).  

 

 
Figure 2. The Interaction Is Non-significant in Range of Values Plotted in Original Paper. 
Notes. Reanalysis of Study 3 by in Mecit et al. (2022) on danger perception of COVID by French speakers (N=302) 

when relying on masculine "le" COVID vs. feminine "la" COVID grammatical terms. Panel A shows the (linear) 

Simple Slopes plot included in the original paper, it only depicts the interaction for moderator values around 0 to 1.5. 

Panels B and C show that after relaxing the linearity assumption there is no interaction in that range. The overall 

interaction is driven by participants with more extreme moderator values, above 1.5. 
Code to reproduce Panels B &C: https://researchbox.org/2859/30 (enter code QAMDS) 

 

In turn, the Johnson-Neyman curve involves putting in the y-axis the effect of the focal 

predictor, for all values of the moderator.5 In the context of a two-cell experiment, it is the vertical 

difference between the two Simple Slopes. This applies to both linear and GAM Johnson-Neyman; 

the only distinction is whether the difference is between straight lines (linear regression) or lines 

that are not necessarily straight (GAM; Figure 2C). 

 
5 One sometimes plots the effect of the moderator values, for all possible values of the focal predictor. 

https://researchbox.org/2859/30
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Having reviewed how interactions are probed, we now return to the interpretation of the 

results from our first example. Recall that the authors found a significant interaction between the 

manipulation and chronic gender stereotyping (p = .0015), which they probed linearly. We 

obtained the data posted by the authors (https://osf.io/9437y) and successfully reproduced the 

results.6 It is worth noting that the original paper plots Simple Slopes for only a subset of the data 

with less extreme moderator values, between 0 and 1.5 (the data spans from -1.75 to +4.75). When 

we probed the interaction with GAM (Figures 2B and 2C), we found that, in this range, there 

actually is neither an average effect nor moderation of said effect, and that the interaction, that 

p = .0015, is entirely driven by more extreme values excluded from the original plot. As shown in 

Figure 2C, the confidence band for the GAM Johnson-Neyman curve includes zero in the entire 

aforementioned range [0-1.5], and it is associated with a significant effect only for more extreme 

moderator values.7  

Intuitively, the original linear analysis over-estimates the effect among participants with 

moderate values by taking the larger effect produced by the more extreme participants, and 

distributing that effect linearly across all observations. This is because a linear model cannot 

accommodate a nonlinear effect. GAM, in contrast, allows for changes of functional form across 

moderator values, and thus does minimal projection and misplacement of effects from one region 

of values to the other. 

 
6 The authors also report results for another dependent variable: (gender) stereotypical judgments about the 

virus e.g., in a bipolar scale how weak/strong, passive/aggressive it is. We reproduce the regression results 

for it as well and for this variable the GAM and the linear models arrive at more consistent conclusions, 

although, the linear Johnson-Neyman produces a significant reversal for low enough (and quite rare) values 

of the moderator while the GAM Johnson-Neyman does not. 
7 To be clear, we are not interpreting the non-significant effect below 1.5 as accepting the null. For instance, 

when the moderator, chronic gender stereotyping, equals 1, the estimated effect of the manipulation is a 

drop of the dependent variable by -0.15, with a confidence interval which does not rule out values up to -

0.46. Because the SD of the dependent variable is about 1, that's a Cohen's-d of about .46. The data, then, 

do not rule out effects of a considerable magnitude. At the same time, they do not rule out zero.  

https://osf.io/9437y


12 

 

   GAM finds a significant effect only for moderator values above 2.06. We follow-up with 

Johnson-Neyman 2.0 (JN2). We split the data into two subsets, one above and one below 2.06, and 

test the effect of the manipulation in each range with simple t-tests. Consistent with the GAM 

results, for moderator values below 2.06, the effect of the manipulation is small and not significant, 

MLa = 4.56 vs. MLe= 4.73, t(267.34) = 1.59, p = .113, while for moderator values equal to or above 

2.06 the difference is more than 10 times larger and highly significant, MLa = 3.54 vs. MLe = 5.47, 

t(26.32) = 3.72, p < .001. 

In terms of the implications of these differences in results, the conclusions from the study 

are interestingly updated when we stop imposing the linearity assumption. First, the effect is driven 

by people with extreme values of sexism. This is especially relevant if one were theoretically 

interested in more common and possibly implicit levels of sexism, as opposed to more extreme 

and overt levels. That an overall finding is driven by extreme observations hints at a potentially 

different type of effect than if the overall finding were driven by more typical observations. 

Second, from a purely descriptive perspective, a smaller share of the participants exhibit the effect 

of interest. While 52% of participants exhibited sexism levels high enough to imply they showed 

the effect with linear Johnson-Neyman (moderator above 0.53), only 10% did for the effect implied 

by GAM Johnson-Neyman (moderator above 2.06). This may be important if the goal is to 

understand typical rather than atypical effects. Third, because the effect is driven by more extreme 

observations, a closer look at potential measurement issues with those participants (inattention, 

demand effects, tendency to give high answers to every question, etc.) may be justified (we do just 

that in Supplement 1). 

For ease of exposition we focused the above discussion on significant vs. non-significant 

regions. The same qualitative contrast arises if we were to instead focus on estimated effect size, 
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or their confidence interval. For example, JN2 could include not only the range of moderator values 

with a significant effect, but with a directional positive effect. 

 

Example 2: Timing is Everything (Except Linear)  

 Zor, Kim, and Monga (2022) propose that time of day predicts the kinds of tweets that 

people engage with, specifically, that "as morning turns to evening" (p.473) engagement in social 

media shifts from virtue (e.g., liking a tweet from The Atlantic) to vice (e.g., liking a tweet from 

Vanity Fair).8 

In their Study 1A they analyze 176,390 tweets from eights magazine accounts, four 

belonging to "virtue magazines" (The Atlantic, Forbes, Health and The New Yorker) and four to 

"vice magazines" (Cosmopolitan, Entertainment Weekly, People and Vanity Fair).   

The authors analyze the number of likes a tweet obtains within its first hour, across tweets 

posted at different times of day. They report a significant (time of day × virtue vs. vice) interaction, 

"z=12.17, p<.001" (p.479).9 Probing the interaction with the (linear) Johnson-Neyman procedure, 

they conclude that before 12.01 PM, virtue tweets get more likes than vice tweets do, and that 

starting at 2:26 PM, the opposite is true.10 We obtained data posted by the authors 

(https://osf.io/hya8z) and successfully reproduced the key results.11  

What's interesting for us, given our focus on the probing of interactions, is that when 

relying on the linear model, the published result hinges entirely on the hour at which we define the 

 
8 The phrase "when morning turns to evening" appears 7 times in the paper. 
9 Functional form aside, the published analyses do not take dependence into account, treating observations 

as statistically independent; we do not think the reported significance results are valid. 
10 The authors do not indicate how they handled time zones, we use the posted data as is. 
11 We do obtain slightly different estimates for reasons we were not able to determine. It is possible they 

are explained by different defaults in STATA (used by the original authors) vs. R. For example, the authors 

report Z=12.17 for the interaction, and we obtain Z=12.525. The differences are inconsequential, however. 

For example, the authors find that before 12.01 PM liking was lower for vice magazines, and with our 

results it is 11.59AM, just two minutes apart.  

https://osf.io/hya8z
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start of the day. If we do as the authors did, and define the start of the day at 6AM, we reproduce 

their findings. See left panel in Figure 3. However, if we define the start of the day at midnight, 

which is how many people define the start of the day, a completely different pattern —one that 

lacks an interaction—  is obtained; see middle panel in Figure 3. And if we define the start of the 

day at 4PM, yet another completely different pattern arises (one that also lacks an interaction). See 

right panel in Figure 3.  

 
Figure 3. Linear Probing Gives Inconsistent Answers for Different Definitions of Start of Day 
Notes. Reanalysis of Study 1A by in Zor, Kim, and Monga (2022) on number of likes (N=176,390) received by tweets 

posted at different times of day. Left panel reproduces the published results, middle and right panels depict how the 

probed interaction differs when using different start-day definitions with the same linear model. 
Code to reproduce figure: https://researchbox.org/2859/7  (enter code QAMDS) 

 

You can start getting an intuition for why this happens, and for why neither model in 

Figure 3 is a sensible depiction of reality, by noticing an incoherent pattern implied by modelling 

time of day linearly. In the left panel, for example, focus on when a day ends and a new day begins, 

going from the right-end to the left-end of the graph. The predicted number of likes drops 

discontinuously from the end of the figure (which corresponds to 5:59 AM) to the left-end of the 

figure (which corresponds to 6:00 AM). The drop for that single minute is (necessarily) of the same 

magnitude as the change for the remaining 1439 minutes. For example, for Virtue tweets, at 

https://researchbox.org/2859/7
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5:59AM the minimum is obtained, at about 44 likes per tweet; a minute later, at 6:00 AM the 

maximum is obtained, at about 50 likes per tweet.12  

 When we analyze the data with GAM, see Figure 4, the results are not consequentially 

altered by whether the start of the day is defined at 12AM, 6AM, or 4PM.13 For example, in all 

panels we see that virtue and vice tweets follow similar patterns through the day, and that the vice 

peak and trough are more pronounced at 10PM and 4AM respectively. More generally, GAM 

estimates a daily pattern that is completely different from the pattern obtained with the linear 

model; it is cyclical rather than linear (of course, a linear model cannot estimate a cyclical 

relationship). 

 
Figure 4. GAM Probing is Robust to Different Definitions of Start of Day. 
Notes. Reanalysis of Study 1A by in Zor, Kim, and Monga (2022) on number of likes (N=176,390) received by tweets 

posted at different times of day. In contrast to the linear model (see Figure 3) GAM probing leads to similar results no 

matter when the day is defined to start. All results are inconsistent with those in the published paper.  

Code to reproduce figure: https://researchbox.org/2859/7  (enter code QAMDS) 

 

The GAM results suggest four distinct periods in terms of how time correlates with 

engagement. We follow up our description of the GAM results with JN2, estimating separate linear 

 
12 The original authors worried about linearity and present a quadratic regression as a robustness check. In 

Supplement 2, we show that this analysis does not address the fact that the results are sensitive to how the 

start of the day is defined. 
13 In the GAM estimation we defined the data as a 'cyclical time series' so that it would take into account 

that 23:59 comes right before 01:00, but even without making this specification GAM recovers very 

similar hourly patterns regardless of what time of day is chosen. 

https://researchbox.org/2859/7
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models for the four periods with distinct overall slopes (reported in parenthesis following the 

description of each period). The four time trends being, (1) increasing from 5AM to 10AM, 

(𝑏̂ = 8.78), (2) flat from 10AM to 6PM (𝑏̂ = -0.39), (3) increasing from 6PM to 10PM (𝑏̂ = 5.68), 

and (4) decreasing from 10PM to 5AM (𝑏̂ = -10.00).14  

 

Example 3: A Spurious Sign Reversal 

Barnes and Shavitt (2023) propose that 'interdependent' people prefer products that are 

frequently loved rather than frequently bought, while 'independent' people are not impacted by 

whether a product is frequently loved or bought; for them it "makes little difference" (their 

abstract).  

In their Study 5, participants were presented with an image of a set of headphones which 

they were told 81% of people had either purchased or loved (there was also a control condition 

which is not relevant for our purposes). Participants then indicated their interest in the headphones 

through a few measures aggregated onto an index. Participants also completed a multi-item scale 

measuring how inter- vs independent they were. The authors report a significant interaction, such 

that the effect of the frequently bought vs. loved manipulation was moderated by the degree of 

interdependence, p = .003. Re-analyzing the original data (https://researchbox.org/108) we 

successfully reproduced this result.  

What's interesting for us, given our focus on the probing of interactions, is that while in a 

manner that is consistent with the abstract, the linear interaction reported by the authors implies 

 
14 We do not report statistical significance because the data are heavily dependent, a cyclical time series where there 

is correlation across tweets at the same time (due to time shocks), and across times. We thus report the coefficient 

for illustrative purposes only. We multiplied the coefficients by 100 to facilitate their comparison within the 

paragraph. 

https://researchbox.org/108
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that interdependent participants actively prefer frequently loved products, in a manner that 

contradicts the abstract, it also implies that independent participants show the opposite pattern.  

Concretely, as shown in Figure 5, left panel, the linear Johnson-Neyman curve implies that 

for moderator values below -1.31 there is a statistically significant reversal of the effect (the 

authors predict no effect among them). However, with the GAM Johnson-Neyman, right panel, the 

effect for low values of the moderator is estimated as much smaller and far from significant (with 

the moderator at -1.5, the estimated effect is 0.14 points, p = .704, in contrast to .65 points, p = 

.035 with the linear model). 

 
Figure 5. Effect Reverses Only If We Assume Linearity 
Notes. Reanalysis of Study 5 by Barnes and Shavitt (2023) on how on how behavioral vs. attitudinal cues (being told 

that 81% of people bought vs. loved a set of headphones) affect product interest depending on participants' (N=128) 

cultural orientation. The significant reversal among more independent individuals is only obtained when forcing 

linearity on the data by estimating a linear model. 

Code for figure: https://researchbox.org/2859/42  (enter code QAMDS) 

 

Interestingly, at the lowest value of cultural orientation, the confidence interval of the GAM 

barely includes the point estimate of the linear model. The confidence band of the GAM is quite 

wide and does not reject a sizeable effect of either sign (nor zero of course). Our read is that the 

surprising sign reversal obtained in the original analysis is a side-effect of the arbitrary linearity 

assumption, and that the data do not conclusively support nor contradict such reversal.  

https://researchbox.org/2859/42
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We follow up these analyses with JN2 tests. First, we apply JN2 to the results reported in 

the original paper, which relied on linear Johnson-Neyman. Specifically, the paper reads "the effect 

of behavioral vs attitudinal consensus cues . . . was negative and significant . . . [when the 

moderator was] at or above 0.28 . . . [and] positive and significant . . . [with moderator values] at 

or below ‑1.31" (p. 11).  Beginning with the former result, a simple t-test on the subset of data with 

moderator values above 0.28 verified the negative effect of the behavioral cue, Mattitudinal = .41 vs. 

Mbehavioral = -.18, t(37.21) = 2.47, p = .018. Continuing with the latter result in the original Johnson-

Neyman analysis, a simple t-test on the subset of data with moderator values below -1.31 did not 

verify the sign reversal, as the behavioral cue was directionally still lower, Mattitudinal = -.87 vs. 

Mbehavioral = ‑1.26, t(6.98) = 1.10, p = .309. The JN2 results are thus consistent with GAM Johnson-

Neyman but not with linear Johnson-Neyman. 

 

Example 4: Significant Estimate of the Wrong Sign 

 Woolley, Kupor, and Liu (2023) propose that consumers prefer high-tech products made 

by larger companies and low-tech products made by smaller companies. The paper includes one 

observational study (Study 1) and five experiments (Studies 2-6). Here, we focus on Study 1.  

In their Study 1, the authors use a company's Net Promoter Score (NPS) as a proxy for 

perceived quality of its products (it ranges from -100 to +100). They obtain data for 480 companies 

in the Fortune 500 list. The authors predicted "an interaction between company size and industry 

type (low-tech vs. high-tech), such that a larger [company] size would negatively predict NPS for 

low-tech industries but would positively predict NPS for high-tech industries" (p.430).  

Company size was measured by averaging the number of employees and revenues per 

company, and the tech-intensity of each company was based on an MTurk survey where participant 
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evaluated companies on a 7-point scale (from 1=low tech to 7=high tech). The NPS data was 

obtained from "Customer Guru" (p. 433).  

 The authors estimate a regression predicting NPS with company size, tech intensity, and 

the interaction, which was statistically significant, p < .001. The authors probed the interaction 

with the (linear) Johnson-Neyman procedure, finding that company size was negatively associated 

with Net Promoter Score when the tech index was below 1.94, and positively when above 3.57. 

We obtained the data posted by the authors (https://osf.io/hya8z/) and successfully reproduced 

these results (see Figure 6A). 

What's interesting for us, given our focus on the probing of interactions, is that the reversal 

for low-tech firms, that estimated negative coefficient for company size among low-tech firms, 

appears to be spurious. In the GAM model, the association is actually positive also for low-tech 

firms. Specifically, Figure 6B shows the GAM Johnson-Neyman curve, which in this case is U-

Shaped. It shows that the association between company size and NPS is positive for both high- 

and low-tech firms.  

This result contradicts the abstract which states that "For low-tech products . . . quality 

evaluations and choice [move] in favor of smaller companies." (p.425). It may seem surprising 

that the linear regression shows a positive slope if the true functional form is u-shaped, especially 

when the negative slope among low moderator values is more pronounced than the positive slope 

for high moderator values. The explanation lies in the distribution of the moderator: there are very 

few observations with moderator values below 3. When minimizing squared errors in linear 

regression, the model sacrifices fit in regions with fewer observations (lower moderator values) to 

https://osf.io/hya8z/
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better fit regions with more observations (higher moderator values), resulting in an overall positive 

slope.15   

 

Figure 6. Linear Model Estimates Spurious Reversal 
Notes. Reanalysis of Study 1 by Woolley et al. (2023) on how company-size (N=480 companies) predicts Net Promoter 

Score (NPS) for companies rated low- vs. high-tech (by sample of MTurk respondents). The patterns that among low-

tech companies bigger companies get lower NPS is only obtained when forcing linearity in the model.  

Code for figure: https://researchbox.org/2859/43 (enter code QAMDS) 

 

Note how the confidence band from the GAM adequately incorporates the uncertainty from 

the small sample size among low-moderator values, while the linear regression does not. The 

reason is that the linear regression assumes the true model is linear, and thus the slope in regions 

with little (or even no) data is inferred, with confidence, from the slope in distant regions with 

more data. The GAM, in contrast, uses only nearby data to make that inference and thus the 

confidence band widens much faster. For example, the standard error for the point estimate for a 

company with a tech index equal to 2 is about five times larger with GAM than with the linear 

 
15 In Supplement 3, we (i) further explore the data identifying significant outliers (e.g., Walmart is 15 SDs larger 

than the mean in company size), (ii) document that with robust standard errors the results change substantially, and 

(iii) report GAM probing results for the 25th,  50th, and 75th percentile of the moderator. 

https://researchbox.org/2859/4
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model (5.10 vs. 0.99 respectively). The GAM results are providing better knowledge and better 

meta-knowledge. 

In the previous three examples we relied on JN2 to complement results obtained from 

GAM probing. We do not do so for this example because, with observational data, and especially 

when x and z in the x·z are non-dichotomous, a linear regression, even when estimated on a subset 

of the data, can be biased by non-linearities (Ganzach 1997). In addition, in this particular dataset, 

there are severe outliers (e.g., one of the companies, Walmart, is 15 standard deviations larger than 

the mean), which make average regressions especially difficult to interpret (see Supplement 3).  

  

Do GAMs Need Larger Sample Sizes? 

 Researchers often intuit that flexible models like GAMs, require much larger sample sizes 

than do linear models to be informative. This, however, does not seem to be the case. To illustrate, 

we present results from a simulation comparing the precision of linear regression and GAM when 

relying on small samples. 

We simulate a true model that is linear, giving the linear regression the advantage. 

Specifically, we generated a true model: y = x + z + x·z + e, where x is randomly assigned (1 vs. 

0), z is a standard-Normal moderator, and e is noise. We consider a researcher interested in 

estimating a model with the x·z interaction, and probing the effect of x at the 15th vs. 85th percentile 

of z.16 We run 5,000 simulations adding 9 times as much variance from noise as there is variance 

produced by the x·z interaction, and another 5,000 simulations with 99 times as much noise as 

there is signal. This means that the highest possible R2 is 10% and 1% respectively. Figure 7 depicts 

the distribution of estimated probed effects.  

 

 
16 For normally distributed data, the 15th and 85th percentiles are roughly the mean plus/minus one SD. 
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Figure 7. When True Model is Linear, Linear Regression and GAM are Similarly Precise 
Note: Distributions of estimated changes in the effect of x on y when the moderator goes from 15th to 85th percentile. 

The true model is y = x + z + x·z + e, where x is randomly assigned (1 vs. 0), z is a standard normal moderator, and 

e represents Normal noise. In Panel A, the error accounts for 90% of the variance, whereas in Panel B, it accounts 

for 99% of the variance. Sample sizes are n=100 and n=1000 respectively, achieving power around 90%. 

Code to reproduce figure: https://researchbox.org/2859/6 (enter code QAMDS) 

 

We see that the mean estimates for GAM and linear regression are nearly identical, and the 

variation in estimates of the probed interaction increase by about 15% with GAM. In Supplement 

4, we show similar simulations for skewed distributions of the moderator. 

Conclusions 

Whenever we probe interactions with linear models, we rely on tools that assume, rather 

than estimate, the functional form of the effects of interest. In this paper, we have shown that this 

assumption can lead to highly misleading results and support erroneous conclusions from data. 

Our reanalysis of four recently published papers demonstrates that the problems associated with 

assuming linearity are not just a theoretical possibility, but a practical reality.  

Our proposed Johnson-Neyman 2.0 procedure allows researchers to relax the linearity 

assumption by combining GAM's flexibility with the interpretability of traditional statistical tools. 

By first visualizing interactions using GAM and then confirming key findings with targeted tests 

on relevant data subsets, JN2 provides researchers with clear numerical summaries that are 

https://researchbox.org/2859/6
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straightforward to communicate and evaluate—and that serve as a valuable robustness check. We 

see no realistic circumstances where linear probing of interactions—the approach currently 

adopted in virtually all papers—would be preferable to GAM probing of interactions. We see the 

transition from linear to non-linear probing as unavoidable; JN2 should facilitate that transition.  

JN2 has an important limitation that must be emphasized: it is only valid when the predictor 

and moderator of interest (x and z in x·z) are independent—a condition typically met in 

experiments but not in observational data. When x and z are correlated, non-linearities in their 

impact on the dependent variable lead to bias in the estimates of the linear interaction (Cortina 

1993; Ganzach 1997, 1998; Lubinski and Humphreys 1990), making regressions run on subsets of 

data less compelling for evaluating a GAM model's robustness. For this reason, we do not rely on 

JN2 in Example 4, and in Example 2 we use it only to establish a main effect of tweets being liked 

throughout the day, rather than the interaction with vice vs. virtue magazines.  
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