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The empirical testing of scientific hypotheses requires data 
analysis, but data analysis is not straightforward. To convert 
a scientific hypothesis into a testable prediction, research-

ers must make a number of data analytic decisions, many of which 
are both arbitrary and defensible. For example, researchers need to 
decide which variables to control for, which observations to exclude, 
which functional form to assume, which subgroups to analyse, and 
so on.

When reading the results of a study, people want to learn about 
the true relationship being analysed but this requires that the analy-
ses reported are representative of the set of valid analyses that could 
have been conducted. This is often not the case. One problem is 
the possibility that the results may hinge on an arbitrary choice by 
the researcher1. A probably greater, more pervasive problem is that 
people in general, and researchers in particular, are more likely to 
report evidence consistent with the claims they are trying to make 
than to report evidence that is inconsistent with such claims1–4. The 
standard errors around published effect sizes represent the sam-
pling error inherent in a particular analysis, but they do not reflect 
the error caused by the arbitrary and/or motivated selection of 
specifications.

In this article we introduce specification curve analysis as a way 
to mitigate this problem. The approach consists of reporting the 
results for all (or a large random subset thereof) ‘reasonable specifi-
cations’, by which we mean specifications that are (1) sensible tests 
of the research question, (2) expected to be statistically valid and (3) 
not redundant with other specifications in the set.

The specification ‘curve’ shows the estimated effect size across all 
specifications, sorted by magnitude, accompanied below by a ‘dash-
board chart’ indicating the operationalizations behind each result. 
This enables visual identification by the reader of both variation 
in effect size across specifications and its covariation with opera-
tionalization decisions. Specification curve analysis also includes an 
inferential component, which combines the results from all speci-
fications into a joint statistical test. It assesses whether, in combi-
nation, all specifications reject the notion that the effect of interest 
does not exist.

There is a long tradition of considering robustness to alterna-
tive specifications in social science. The norm in economics and 
political science, for example, is to report regression results in tables 

in which each column reports a different specification, allowing 
readers to compare results across specifications. We can think of 
specification curve analysis as an extension and formalization of 
that approach, one that substantially reduces the room for selective 
reporting (from grey dots to red ovals in Fig. 1).

There have been other attempts to formalize this process. One 
proposal is that researchers modify the estimates of a given model 
to take into account an initial model selection process guided by 
fit (for example, when deciding between a quadratic versus cubic 
polynomial5). Another assesses whether the best-fitting model 
among a class of models fits better than expected by chance6.  
A third proposal consists of reporting the standard deviation of 
point estimates across a few carefully chosen alternative specifica-
tions7. A fourth approach is known as ‘extreme bounds analysis’1, 
where a regression model for every possible combination of covari-
ates is estimated. A relationship of interest is considered ‘robust’ 
only if it is statistically significant in all models, or if a weighted 
average of the t-test in each model is itself statistically significant8. 
A more recent proposal consists of estimating a large number of 
specifications, going beyond just covariates to include functional 
form and regression model and plotting the distribution of results 
obtained across specifications9,10.

Specification curve analysis contributes to these efforts by facili-
tating the visual identification of the source of variation in results 
across specifications (see Fig. 2), without imposing linearity on such 
effects10. Specification curve analysis also provides a formal joint 
significance test for the family of alternative specifications, derived 
from expected distributions under the null.

A non-statistical approach to dealing with selective reporting 
consists of pre-analyses plans11,12. Specification curve analysis com-
plements this approach, allowing researchers to pre-commit to run-
ning the entire set of specifications they consider valid, rather than 
only a small and arbitrary subset of them as they must currently do. 
Researchers, in other words, could pre-register their specification 
curves.

If different valid analyses lead to different conclusions, tradi-
tional pre-analysis plans lead researchers to blindly pre-commit to 
one versus the other conclusion by pre-committing to one versus 
another valid analysis, while specification curve allows researchers 
to learn which specifications the conclusion hinges on.
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an intuitive presentation of the problem we want to solve
To analyse data, we need to make decisions about specifications. 
Some of these decisions are guided by theory or beliefs about the 
phenomenon of interest. Other decisions are guided instead by 
convenience, happenstance, the desire to report stronger-looking 
results, or nothing at all. Specification curve analysis is concerned 
with minimizing the impact of specification decisions that are based 
on neither theory nor beliefs.

Some researchers object to blindly running alternative specifica-
tions that may make little sense for theoretical or statistical reasons 
just for the sake of ‘robustness’. We are among those researchers. 
We believe one should test specifications that vary in as many of 
the potentially ad hoc assumptions as possible without testing any 
specifications that are not theoretically grounded. If a specification 
does not make sense theoretically or statistically, or if it is unambig-
uously inferior to alternative specifications, it does not belong in a 
robustness test in general, nor in a specification curve in particular.

For example, a researcher interested in the causal effect of raising 
children on adult happiness should control for the marital status of 
the adults. Because married adults are more likely to have children 
than unmarried ones, the estimates of the happiness effect of raising 
children will (partially) include the separable effect on happiness 
of having a spouse13. Thus, reporting results with and without con-
trolling for marital status may be interesting and informative, but 
it does not constitute an exercise in robustness because both sets 
of results do not provide two a priori equally valid answers to the 
same research question. Only specifications that include a control 
for marital status represent valid tests of this hypothesis.

Nevertheless, many analytic decisions are arbitrary and no more 
or less defensible than any others. For instance, in an event study, 
we should expect robustness tests on the definition of the length of 
the before and after periods14. In a study on the effect of income on 
well-being we should expect robustness tests on different measures 
of well-being—say, happiness and life satisfaction15. In a study on 
labour participation we should expect robustness tests on what is 
used as the full-time equivalence of someone working part-time16.

Figure 1 helps to illustrate what it means, and what it does not 
mean, to report the results of a representative set of reasonable 
specifications. Figure 1a depicts the menu of specifications as seen 
from the eyes of a given researcher. There is a large, possibly infi-
nite, set of specifications that could be run. The researcher consid-
ers only a subset of these to be valid (the blue oval), some of which 
are redundant with one another (for example, log transforming x 
using log(x + 1) or using log(x + 1.1)). The set of reasonable specifi-
cations (the red oval) includes only the non-redundant alternatives 
(for example, either log(x + 1) or log(x + 1.1), but not both).

Because competent researchers often disagree about whether a 
specification is an appropriate test of the hypothesis of interest and/
or statistically valid for the data at hand (that is, because different 
researchers draw different ovals), specification curve analysis will 
not end debates about what specifications should be run: specifica-
tion curve analysis will instead facilitate those debates.

Even if two researchers have non-overlapping sets of reason-
able specifications, specification curve analysis can help them 
understand why they may have reached different conclusions, by 
disentangling whether those different conclusions are driven by 
different beliefs about which specifications are valid, or whether 
they are driven by arbitrary selectively reported results from those 
sets. In other words, specification curve disentangles whether the 
different conclusions originate in differences regarding which 
sets of analyses are deemed reasonable (different red ovals), or 
merely in which few analyses the researchers reported (different 
grey dots).

a formal presentation of the problem we want to solve
Let’s consider a relationship of interest between variables x and y, in 
a context in which other variables, Z, may influence the relationship: 
y = F(x,Z) + e. For example, x may be education, y may be economic 
success and Z may include moderators (for example, school quality) 
and/or confounds (for example, parental education); e consists of 
orthogonal predictors of y (for example, luck).

Learning about y = F(x,Z) poses several practical challenges:  
(1) x and y are often imprecisely defined latent variables (for exam-
ple, education and economic success are both imprecisely defined 
latent variables); (2) the set of moderators and confounders in Z 
are often not fully known ex ante; (3) Z also contains imprecisely 
defined latent variables (for example, school quality is a latent and 
imprecisely defined predictor of economic success); and (4) the 
functional form F() is not known. To study y = F(x,Z), research-
ers must operationalize the underlying constructs. Let’s designate 
the operationalization of a construct θ, with θ. Researchers, then, 
approximate y = F(x,Z) with a specification, a set of operational-
izations: yky ¼ FkF ðxkx ;ZkZ Þ

I
, where ky, kF, kx and kZ are indices for 

single operationalizations of the respective constructs. For example 
y1
I

 may operationalize ‘economic success’ with yearly salary, while y2
I

 
with private jet seat capacity.

For each construct there are multiple statistically valid, theo-
retically justified and non-redundant operationalizations. Their 
combination leads to what we refer to as the set of reasonable speci-
fications, which, as discussed in the previous section, may be at least 
somewhat subjective. Designating the total number of valid oper-
ationalizations for each construct with ny, nx, nZ and nF, the total 
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Fig. 1 | Sets of possible specifications as perceived by researchers. a, The set of specifications reported in an article are a small subset of those the 
researcher would consider valid to report. b, Different researchers may have similar views on the set of valid specifications but report quite different 
subsets of them. c, Different researchers may also disagree on the set of specifications they consider valid.
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number of reasonable specifications available to study y = F(x,Z) is 
N ≤ nx × ny × nZ × nF.

Let Π be this set of N reasonable specifications, and π be the 
subset of specifications reported in a paper. Thinking about π as a 
sample of Π makes it easier to understand the problem that specifi-
cation curve analysis attempts to remedy.

By definition, any given yky ¼ FkF ðxkx ;ZkZ Þ
I

 is considered a valid 
proxy for y = F(x,Z) and therefore so is the full set of all such proxies: 
Π. A (1) large, (2) random and (3) independently drawn sample of 
Π would thus lead to a reasonable estimate of the model of inter-
est: y = F(x,Z). The problem is that π, the sample of specifications 
reported in a paper, has none of these three properties.

First, it is small, not large. Researchers report a few specifications 
in any given paper, providing a statistically noisy approximation. 
Second, it is a curated rather than a random sample. Researchers 
often choose which specifications to report knowing the results of 
these versus other specifications, after knowing how they, review-
ers, and audience members respond to different results. Thus, π is 
chosen by a person seeking academic success, not by a random sam-
pling procedure blind to the consequences of selecting one versus 
another specification to report.

Third, and least obvious, the specifications in π are not statisti-
cally independent. How much information is there in the fact that a 
result is obtained across ten rather than just three specifications? It 
depends on how statistically independent the alternative specifica-
tions are. In other words, it depends on how likely it is, under the 
null, that one specification in π will show an effect if another speci-
fication in π already does. Currently the statistical independence of 
robustness results is not considered, either formally or informally. 
Results are labelled as robust without considering how likely they 
are to coincide by chance alone.

Specification curve analysis addresses all three of these prob-
lems. First, it generates a much larger π, where hundreds or even 
thousands of specifications are reported. This increases statistical 

efficiency by reducing specification noise. It also makes transpar-
ent the existence of such noise, and allows readers to determine its 
nature (that is, which operationalization decisions are versus are 
not consequential). Second, specification curve analysis generates 
a π with fewer arbitrary inclusion decisions, and thus more closely 
approximates a random sample of Π. When using specification 
curve analysis we can more legitimately consider π as an approxi-
mation of y = F(x,Z), though for the sampling to be even closer 
to random it would need to be performed by researchers who are 
blind to the consequence of choosing one versus another specifica-
tion. Third, specification curve analysis allows statistical inference 
that takes into account the statistical dependence across alternative 
specifications in π.

The null hypothesis that the true effect of x on y is zero for all 

specifications is thus: H0: 
d FkFð Þ
d xkxð Þ
I

 = 0, ∀ πk in Π, where πk indexes the 

valid operationalizations in Π. For example, considering the special 
(though quite general) case of a general additive model where F(x,Z) 

= fx(x) + fz(z) + fxZ(xZ), the null is H0: 
dðf xkF Þ
dðxkx Þ

¼ dðf xZkF Þ
dðxkx Þ

I

 = 0, ∀ πk in Π 

and ∀ observable x.

Conducting specification curve analysis
Specification curve analysis is carried out in three main steps:  
(1) define the set of reasonable specifications to estimate; (2) 
estimate all specifications and report the results in a descriptive 
specification curve; and (3) conduct joint statistical tests using an 
inferential specification curve.

We demonstrate these three steps by applying the specification 
curve to two published articles with publicly available raw data. One 
reports that hurricanes with more feminine names have caused more 
deaths17. We selected this paper because it led to an intense debate 
about the proper way to analyse the underlying data17–22, provid-
ing an opportunity to assess the extent to which specification curve 
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Fig. 2 | Descriptive specification curve. Each dot in the top panel (green area) depicts the marginal effect, estimated at sample means, of a hurricane 
having a female rather than male name; the dots vertically aligned below (white area) indicate the analytical decisions behind those estimates. A total of 
1,728 specifications were estimated; to facilitate visual inspection, the figure depicts the 50 highest and lowest point estimates and a random subset of 
200 additional ones, but the inferential statistics for specification curve analysis include all 1,728 specifications. NS, not significant.
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analysis could inform such debates. The second article reports a field 
experiment examining racial discrimination in the job market23.  
We selected this highly cited article because it allowed us to show-
case the range of inferences that specification curves can support. 
We discuss in detail each of the three steps for specification curve 
analysis with the first example, and then apply them to the second.

Both of these examples involve a key predictor that is orthogonal 
to all others. In a later section we explain how to conduct infer-
ence in specification curve analysis when this is not the case (for 
example, when data do not originate in an experiment).

Step 1: Identify the set of specifications. The set of reasonable 
specifications can be generated by (1) enumerating all of the data 
analytic decisions necessary to map the scientific hypothesis or 
construct of interest onto a statistical hypothesis; (2) enumerating 
all the reasonable alternative ways a researcher may make those 
decisions; and (3) generating the exhaustive combination of deci-
sions, eliminating combinations that are invalid or redundant. If the 
resulting set is too large, then in the next step (estimation) one can 
randomly draw from them to create specification curves.

To illustrate, in the hurricanes study17 the underlying hypothesis 
was that hurricanes with more feminine names cause more deaths 
because they are perceived as less threatening, leading people to 
engage in fewer precautionary measures.

As shown in Table 1, we identified five major data analytic deci-
sions required to test this hypothesis, including which storms to 
analyse, how to operationalize hurricanes’ femininity, how to opera-
tionalize the severity of the hurricane, which regression model to 
use and which functional form to assume for the effect of hurricane 
name. Although the authors’ specification decisions appear reason-
able to us, there are many more alternatives that are just as reason-
able. The combination of all operationalizations we considered valid 
and non-redundant makes up our red oval, a set of 1,728 reasonable 
specifications (see Supplementary Note 1 for details).

Step 2: Estimate and describe results. The descriptive specification 
curve serves two functions: displaying the distribution of estimates 
that are obtained through alternative reasonable specifications, and 
identifying which analytical decisions are the most consequential. 
When the set of reasonable specifications is too large to be esti-
mated in full, a practical solution is to estimate a random subset of, 
say, a few thousand specifications.

Figure 2 shows the descriptive specification curve for the hur-
ricanes example. The top panel depicts estimated effect size, in 
additional fatalities, of a hurricane having a feminine rather than 
masculine name. The figure shows that the majority of specifica-
tions lead to estimates of the sign predicted by the original authors 
(feminine hurricanes produce more deaths), though a very small 
minority of all estimates is statistically significant (P < 0.05). The 
point estimates range from −1 to +12 additional deaths. To make 
comparable point estimates for the continuous and discrete mea-
sures of femininity, we compute the average value of the former for 
the two possible values of the latter, and compute as the effect size 
the difference in predicted deaths for both values. Estimates are 
marginal effects computed at sample means.

The bottom panel of the figure tells us which analytic decisions 
produce different estimates. For example, we can see that obtaining 
a negative point estimate requires a fairly idiosyncratic combination 
of operationalizations: (1) not taking into account the year of the 
storm, (2) operationalizing the severity of the storm by the log of 
damages, (3) conducting an ordinary least squares regression, and 
so on. A researcher motivated to show a negative point estimate 
would be able to report 20 different specifications that do so, but the 
specification curve shows that a negative point estimate is atypical.

Following the publication of the hurricanes paper, the journal 
Proceedings of the National Academy of Sciences (PNAS) published 
four letters/critiques proposing alternative specifications under 
which the impact of hurricane name on fatalities disappears18–21. 
In particular, the critiques argued that outlier observations with 
>100 deaths should be excluded19,21, that the regression should 
include an interaction between intensity of the hurricane and dol-
lar damages as a predictor18, and that dollar damages should not be 
included as a predictor at all20.

Returning to Fig. 1, this appears to be a panel c situation. 
Original authors and critics disagree on which set of valid specifica-
tions to run. The specification curve results from Fig. 2 show that, 
while such disagreements may be legitimate and profound, we do 
not need to address them to determine what to make of the hur-
ricane data. In particular, the figure shows that even keeping the 
same set of observations as the original study and treating damages 
in the same way as in the original, it is the case that modifying vir-
tually any arbitrary analytical decision renders the original effect 
non-significant. Readers need not take a position on whether it does 
or does not make sense to include a damages × pressure interaction 
in the model to determine whether the original findings are robust.

When the number of specifications is large, a descriptive speci-
fication curve may be too dense for visual identification of patterns 
of interest; in Supplementary Note 5 (Supplementary Figs. 8–10) we 
propose a few alternative visualizations.

Figure 2 shows that PNAS could have published nearly 1,700 let-
ters showing individual specifications that make the effect disap-
pear (without deviating from the original red oval). It also could 
have published 37 responses with individual specifications showing 
the robustness of the findings. It would have been better to publish 
a single specification curve in the original paper. Visually inspecting 
Fig. 2, we learn not only about the variability of the point estimate 
across specifications but also about which operationalizations are 
consequential. For example, we learn that (1) only by logging both 
damages and fatalities and dropping the two outliers does a sign 
reversal arise; (2) the treatment of outliers is consequential but the 
definition of hurricane severity less so; (3) effects become larger as 

Table 1 | original and alternative reasonable specifications used 
to test whether hurricanes with more feminine names were 
associated with more deaths

Decision original 
specifications

alternative specifications

(1)  Which storms to 
analyse

Excluded two 
outliers with the 
most deaths

Dropping fewer outliers 
(zero or one); dropping 
storms with extreme 
values on a predictor 
variable (for example, 
hurricanes causing 
extreme damages)

(2)  Operationalizing 
hurricane names’ 
femininity

Ratings of femininity 
by coders (1–11 
scale)

Categorizing hurricane 
names as male or female

(3)  Operationalizing 
hurricane 
strength

Property damages 
in dollars; minimum 
hurricane pressure

Log of dollar damages, 
hurricane wind speed.

(4)  Type of 
regression model

Negative binomial 
regression

Ordinary least squares 
with log(deaths + 1) as the 
dependent variable

(5)  Functional form 
for femininity

Assessed whether 
the interaction of 
femininity with 
damages was greater 
than zero

Main effect of femininity; 
interacting femininity 
with other hurricane 
characteristics (for 
example, wind or category) 
rather than damages
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outliers are retained; and (4) the negative binomial gives systemati-
cally larger results than log(deaths + 1).

inference with specification curve analysis
The third step of specification curve analysis involves statistical 
inference, answering the question: considering the full set of rea-
sonable specifications jointly, how inconsistent are the results with 
the null hypothesis of no effect?

The null hypothesis is that effect of x on y, in y = F(x,Z), is zero. 
Implementing the testing of this null requires a test statistic, a single 
scalar on which we can measure the extremity of the data, the results 
of all yky ¼ FkF ðxkx ;ZkZ Þ

I
 specifications in π, given the null hypoth-

esis. We propose three test statistics for specification curve analysis. 
The first consists of obtaining the median effect estimated across 
all specifications, and then testing whether this median estimated 
effect is more extreme than would be expected if all specifications 
had a true effect of zero.

The second test statistic consists of the share of specifications 
that obtain a statistically significant effect in the predicted direction, 
testing whether such share is more extreme (higher) than would be 
expected if all specifications had an effect of zero. The third test 
statistic is similar to the second, but rather than discretizing each 
P value into a significant versus non-significant dichotomous vari-
able, and counting them, it aggregates all of them in a continuous 
fashion, by averaging the Z value associated with each (for example, 
Z = 1.96 for P = 0.05), as in Stouffer’s method, and testing whether 
the average Z value across all specifications is more extreme than 
would be expected if the true effect were zero in all specifications. 
The third test statistic bypasses arbitrary discretization and is thus 
preferable from a statistical efficiency perspective, but the count of 
statistically significant specification results is a more intuitive met-
ric that answers a question readers are more likely to ask. Rather 
than choosing between a simpler and a more statistically efficient 
result, we propose reporting both.

We do not believe it is possible to generate the distributions 
for any of these test statistics under-the-null analytically (that is, 
with statistical formulas), because the specifications are neither 
statistically independent nor part of a single model. Fortunately, it 
is simple to generate such distributions by relying on resampling 
under-the-null. This involves modifying the observed data so that 
the null hypothesis is known to be true, and then drawing random 
samples of the modified data. The test statistic of interest is then 
computed on each of those samples. The resulting distribution is the 
estimated distribution of the test statistic under the null24–28.

The implementation of under-the-null resampling is more intui-
tive for experiments than for non-experiments, where covariates are 
possibly correlated with the predictor of interest. The two examples 
in this paper involve experiments and we thus explain resampling 
for experiments in this section. Resampling for observational data is 
discussed in more detail in in Supplementary Notes 1–5.

Because specification curve analysis relies on resampling for 
inference, it will be generally robust to assumption violations of the 
underlying specifications. For instance, if due to a violated assump-
tion, some specifications have inflated false-positive rates—for 
example, exhibiting a 14% chance of obtaining P < 0.05 when the null 
is true, instead of the nominal 5%, by relying on resampling-based 
inference—the false-positive rate will be corrected and returned to 
5%. In Supplementary Note 4 we provide a demonstration: a speci-
fication curve that combines a series of Poisson regressions, each 
with an inflated false-positive rate (>40%), obtains—overall—the 
nominal 5% false-positive rate for the specification curve that com-
bines them all.

example 1: inference in the hurricanes paper
Resampling experimental data under the null is simple and intuitive, 
as it involves shuffling the column(s) with the randomly assigned 
variable(s)29–32. In the case of the hurricanes paper, one shuffles the 
hurricane’s name. The shuffled datasets maintain all the other features 
of the original (for example, collinearity, time trends, skewness and 
so on) except that we now know there is no link between (shuffled) 
names and fatalities; the null is true by construction. For each shuffled 
dataset we estimate all 1,728 specifications. Repeating this exercise 
many times gives us the distribution of specification curves under the 
null. The only assumption behind this test is exchangeability31,32, that 
any hurricane could have received any name. The resulting P values 
are hence ‘exact’, not dependent on distributional assumptions.

Sign: because many of the different specifications are similar to 
each other (for example, the same analysis conducted with an out-
lier included versus excluded), the results obtained from different 
specifications are not independent. Therefore, even with shuffled 
datasets we do not expect half the estimates to be positive and half 
negative on any given shuffled dataset; rather, we would expect most 
specifications to be of the same sign. In the extreme case, if all speci-
fications were identical to one another, all results for any given data 
would be identical and thus in each shuffled dataset 100% of results 
would be positive or 100% negative.

To capture this lack of independence graphically, we refer to the 
sign of the majority of estimates for a given dataset as the ‘dominant 

–20

0

20

40

A
dd

iti
on

al
 fa

ta
lit

ie
s

(f
em

al
e

–m
al

e 
hu

rr
ic

an
e)

1 500 1,000 1,500 1,728

Specification (n, sorted by effect size)

Observed data Median under-the-null
2.5th and 97.5th under-the-null

Observed data Median under-the-null

Femininity of hurricane name and deaths

–0.04

–0.02

0

0.02

0.04

C
al

lb
ac

k 
pe

rc
en

ta
ge

(b
la

ck
–n

on
-B

la
ck

 n
am

e)

1 45 90

Specification (n, sorted by effect size)

Impact of Black name on callback rate

–0.10

–0.05

0

0.05

0.10

B
en

ef
it 

of
 q

ua
lit

y 
on

 c
al

lb
ac

k 
pe

rc
en

ta
ge

(b
la

ck
–n

on
-B

la
ck

 n
am

e)

1 45 90

Specification (n, sorted by effect size)

Return of quality resumé for Black versus non-Black name

2.5th and 97.5th under-the-null
Observed data Median under-the-null

2.5th and 97.5th under-the-null

Fig. 3 | observed and expected under-the-null specification curves for the hurricanes and racial discrimination studies. Observed and expected 
under-the-null specification curves for the hurricanes and racial discrimination studies. The expected curves are based on 500shuffled samples where 
the key predictor in each dataset (hurricane and applicant name, respectively) is shuffled. All specifications are estimated on each shuffled sample 
(1,728specifications for hurricanes study, 90 for racial discrimination). The resulting estimates for each shuffled dataset are ranked from smallest to largest. 
The dashed lines depict the 2.5th, 50th and 97.5th percentiles for each of these ranked estimates (for example, the median smallest estimate, the median 
second smallest estimate and so on). Specification curves under the null are typically not symmetric around zero (see Main text). Blue dots depict the 
specification curve for the observed data.
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sign’ and we plot results as having the dominant or non-dominant 
sign rather than a positive or negative sign. This allows visual cap-
ture of how similar estimates of a given dataset are expected to be 
across specifications. This constitutes a two-sided test where 80% of 
specifications—say, having the same sign—is treated as an equally 
extreme outcome regardless of whether it is 80% positive or 80% 
negative.

Results for hurricanes study: Figure 3a contrasts the specification 
curves from 500 shuffled samples with that from the observed hur-
ricane data. The observed curve from the real data is quite similar to 
that obtained from the shuffled datasets—that is, we observe what 
is expected when the null of no effect is true. Table 2 reports the 
results of the three proposed test statistics for statistical inference: 
(1) median effect size, (2) share of results that are significant and 
(3) the average Z-score transformation of each P value (Stouffer’s 
method).

For example, in the observed hurricane data, 37 of the 1,728 spec-
ifications are statistically significant in the predicted direction. 
Among the 500 shuffled samples, 425 have at least 37 significant 
effects in the same direction, leading to a P value for this joint test 
of P = 425/500 = 0.85.

Example 2: discrimination in an audit study. Having gone through 
the three steps for carrying out specification curve analysis with our 
first example, we move on to our second example23, a field experiment  

in which researchers used fictitious resumés to apply for real jobs 
using randomly assigned names that were distinctively Black (for 
example, Jamal or Lakisha) or not (for example, Greg or Emily).

The authors of this article arrived at two key conclusions: appli-
cants with distinctively Black names (1) were less likely to be called 
back and (2) benefited less from having a higher-quality resumé. We 
conducted specification curve analysis for both of these findings. 
For ease of exposition, we considered the same set of specifications 
for both, although they more naturally apply to finding (2). In par-
ticular, we considered two alternative regression models (ordinary 
least squares versus probit), three alternative samples (men and 
women, only men, and only women), and 15 alternative definitions 
of resumé quality. These resulted in a set of 90 reasonable specifica-
tions. We justify this set of specifications and report the descriptive 
specification curves in Supplementary Notes 2 and 3, respectively.

Figure 3b,c shows the inferential specification curve results 
for these findings. Starting with the core finding that distinctively 
Black names had lower callback rates (Fig. 3c), we see that the entire 
observed specification curve falls outside the 95% confidence inter-
val around the null. In Table 2 we see that the null hypothesis is 
formally rejected.

The robustness of the second finding, that resumés with distinc-
tively Black names benefitted less from higher quality, is less clear. 
The observed specification curve never crosses the 95% confidence 
interval (Fig. 3b), and only one of the joint tests is significant at the 
5% level.

inference with non-experimental data
To force the null on non-experimental data, we propose the follow-
ing procedure, which is nearly equivalent to that of Flachaire33. For 
each specification one first estimates the model with the observed 
data—say, estimating the parameters a, b and c in y = a + bx + cz + e. 
Then one forces the null on the data by creating a new dependent 
variable, y*, that subtracts the estimated effect of x on y—that is, 
y* = y – ̂bx, where b̂ is the sample estimate of b. With y* we now have 
a model where the null is true—that is, we have y* = a + b*x + cz + e, 
where we know that b* = 0.

To generate a distribution of expected results, the sampling dis-
tribution of b̂ under the null, one samples with replacement rows 
of data by using y* rather than y as the dependent variable. Each 
resample has the same sample size as the original. The resulting dis-
tribution of b̂ across the resamples is used to assess the extremity 
of the observed b̂ if the null were true. Applying this approach to 
specification curve analysis leads to the following six steps:

 (1) Estimate all K specifications with the observed data, 
yky ¼ FkF ðxkx ;ZkZ Þ
I

. These will result in K different point es-
timates: b̂k

I
. with k = 1…K. Note that yky

I

 may be the same for 
more than one specification, even for all K of them, if the op-
erationalization of the dependent variable is not varied across 
specifications.

 (2) Generate K different dependent variables under the null, 
yk* = yk �bbk ´ xk

I
. Even if there are fewer than K different yk, 

there will be K different y*k because bbk
I

 is different across speci-
fications and thus so is y*k. So now every row of data has the x 
values and K different y* values.

 (3) Draw at random, and with replacement, N rows from this ma-
trix, using the same drawn rows of data for all K specifications.

 (4) Estimate the K specifications on the drawn data.
 (5) Repeat steps 3 and 4 a large number of times (for example, 500 

or 1,000).
 (6) For each bootstrapped sample we now have K estimates, one for 

each specification. Compute what percentage of the resampled 
specification curves (for example, of the 500 resamples) exhib-
its an overall test statistic (for example, median effect size) that 
is at least as extreme as that observed in the real data.

Table 2 | Joint tests for inferential specification curves in the 
two examples

test statistic used observed result P value (% of shuffled 
samples with results as, or 
more, extreme)

example 1: Female hurriance names

 (1) Median effect 
size

1.56 additional deaths P = 0.536

 (2) Share of 
significant results

37 of 1,728 
specifications

P = 0.850

 (3) Aggregate all P 
values

Stouffer Z = 28.47 P = 0.512

example 2a: Black names receive fewer callbacks

 (1) Median effect 
size

3.1 pp fewer calls P < 0.002

 (2) Share of 
significant results

85 of 90 
specifications

P < 0.002

 (3) Aggregate all P 
values

Stouffer Z = 35.71 P < 0.002

example 2b: Black names benefit less from higher quality Cv

 (1) Median effect 
size

2.0 pp smaller benefit P = 0.162

 (2) Share of 
significant results

13 of 90 
specifications

P = 0.032

 (3) Aggregate all P 
values

Stouffer Z = 9.22 P = 0.126

Each overall P value is computed by the proportion of shuffled samples leading to a test statistic 
at least as extreme as in the observed sample. For P value calculations, we divide by two the 
proportion of shuffled samples, resulting in a test statistic of the exact same value as that in the 
observed data34. When no shuffled sample is as extreme as the observed, we report P < 0.002 
because our estimate is that it is less frequent than 1 out of the 500 samples we collected. 
However, estimates as small as that are more susceptible to random simulation error. Stouffer’s Z is 
computed by converting each P value to a Z-score (normal deviate) and then computing a weighted 
average, where the weight is 1 divided by the square root of the number of tests. The P value 
associated with this is also obtained via resampling, rather than from the normal distribution, to 
take into account the lack of independence across specifications (which is why Z = 9.22 (last row in 
Table 2) has a non-significant P value). pp, percentage points.
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Discussion
Specification curve analysis provides a (partial) solution to the 
problem of selectively reported results. Readers expecting a 
judgement-free solution, one where researchers’ viewpoints do not 
influence the conclusions, will be disappointed by this (and any 
other) solution. Only an expert, not an algorithm, can identify the set 
of theoretically justified and statistically valid analyses that could be 
performed and different experts will arrive at different such sets, and 
hence different specification curves (see Fig. 1). The goal to elimi-
nate subjectivity is unattainable (and not, in our view, desirable).

Specification curve analysis has several limitations. First, as 
identified by the review team, its default inferential analysis gives 
equal weight to all included specifications. While all included speci-
fications should be theoretically justified, statistically valid and 
non-redundant, researchers may nevertheless consider some speci-
fications superior to others and that some should be given greater 
weight than others. This limitation can be addressed in principle. If 
desired weights were identified, one could easily modify the three 
test statistics we propose—(1) median effect across specifications, 
(2) share of significant effects and (3) aggregated overall P value 
(using the Stouffer method)—by instead computing (1) a weighted 
median, (2) a weighted proportion of significant effects and (3) a 
weighted Stouffer test. In practice, we believe it is generally difficult 
to identify meaningful numerical weights to give each specification.

The second limitation of specification curve analysis is that it can-
not realistically include all valid analyses that even a given researcher 
might be in favour of running, in part because that number can be 
too large to estimate in full and in part because a researcher may 
not immediately think of all the analyses they would consider valid 
to run. Second, because specification curve analysis merely reduces 
and does not eliminate ambiguity, researchers, as motivated think-
ers, will still be inclined to report results that do versus do not fur-
ther their goals or satisfy expectations. We believe that specification 
curve analysis will reduce, but not eliminate, this problem.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.
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A formal presentation of the problem we want to solve 
 Let's consider a relationship of interest between variables x and y, in a context in which 
other variables, Z, may influence the relationship; y=F(x, Z)+e. For example, x may be 
education, y may be economic success, and Z may include moderators (e.g., school quality) 
and/or confounds (e.g., parental education). e consists of orthogonal predictors of y (e.g., luck). 

Learning about y=F(x,Z) poses several practical challenges: (i) x and y are often 
imprecisely defined latent variables (e.g., education and economic success are both imprecisely 
defined latent variables), (ii) the set of moderators and confounders in Z are often not fully 
known ex-ante, (iii) Z also contains imprecisely defined latent variables (e.g., school quality is a 
latent and not precisely defined predictor of economic success), and (iv) the functional form F() 
is not known. To study y=F(x,Z) researchers must operationalize the underlying constructs. Let's 
designate the operationalization of a construct Ѳ, with Ѳ⃖ሬ⃗ . Researchers, then, approximate 
y=F(x,Z) with a specification, a set of operationalizations: y⃡୩౯

 = F⃡୩ూ
(x⃡୩౮

;Z⃡୩ౖ
), where ky, kF, kx, 

and kZ are indices for single operationalizations of the respective constructs. For example y⃡ଵ may 
operationalize 'economic success' with yearly salary, while y⃡ଶ with private jet seat capacity. 

For each construct there are multiple statistically valid, theoretically justified, and non-
redundant operationalizations. Their combination leads to what we refer to as the set of 
reasonable specifications, which, as discussed in the previous section, may be at least somewhat 
subjective. Designating the total number of valid operationalizations for each construct with ny, 
nx, nZ and nF, the total number of reasonable specifications available to study y=F(x,Z) is 
N ≤ nx*ny*nZ*nF.  

Let Π be this set of N reasonable specifications, and π be the subset of specifications 
reported in a paper. Thinking about π as a sample of Π makes it easier to understand the problem 
Specification Curve analysis attempts to remedy. 

By definition, any given  y⃡୩౯
 = F⃡୩ూ

(x⃡୩౮
;Z⃡୩ౖ

) is considered a valid proxy for y=F(x,Z) and 

therefore so is the full set of all such proxies: Π. A (i) large, (ii) random, and (iii) independently 
drawn sample of Π would thus lead to a reasonable estimate of the model of interest: y=F(x,Z). 
The problem is that π, the sample of specifications reported in a paper, has none of these three 
properties. 

First, it is small, not large. Researchers report a few specifications in any given paper, 
providing a statistically noisy approximation. Second, it is a curated rather than a random 
sample. Researchers often choose which specifications to report after knowing the results of 
these vs other specifications, after knowing how they, reviewers, and audience members respond 
to different results. Thus, π is chosen by a person seeking academic success, not by a random 
sampling procedure blind to the consequences of selecting one vs. another specification to report.  

Third, and least obvious, the specifications in π are not statistically independent. How 
much information is there in the fact that a result is obtained across ten rather than just three 
specifications? It depends on how statistically independent the alternative specifications are. In 
other words, it depends on how likely it is, under the null, that one specification in π will show 
an effect if another specification in π already does. Currently the statistical independence of 
robustness results is not considered, neither formally nor informally. Results are labeled as 
robust without considering how likely the results are to coincide by chance alone.  
 Specification Curve analysis addresses all three of these problems. First, it generates a 
much larger π, where 100s or even 1000s of specifications are reported. This increases statistical 
efficiency by reducing specification noise. It also makes transparent the existence of such noise, 



and allows for readers to determine its nature (i.e., which operationalization decisions are vs. are 
not consequential). Second, Specification Curve analysis generates a π with fewer arbitrary 
inclusion decisions, and thus more closely approximates a random sample of Π. When using 
Specification Curve analysis we can more legitimately consider π as an approximation of 
y=F(x,Z), though for the sampling to be even closer to random, it would need to be performed by 
researchers who are blind to the consequence of choosing one vs another specification.  Third, 
Specification Curve analysis allows statistical inference that takes into account the statistical 
dependence across alternative specifications in π.  

The null hypothesis that the true effect of x on y is zero for all specifications is thus  

H0 :  
ௗሺ⃡ౡూሻ

ௗሺ୶⃡ౡ౮ሻ
 = 0, ∀ πk in Π, where πk indexes the valid operationalizations in Π. For example, 

considering the special (though quite general) case of a general additive model where 

F(x,Z)=fx(x)+fz(z)+fxZ(xZ), the null is H0 :  
ௗሺ⃡౮ౡూ

ሻ

ௗሺ୶⃡ౡ౮ሻ
 =

ௗሺ⃡౮ౖౡూ
ሻ

ௗሺ୶⃡ౡ౮ሻ
 = 0, ∀ πk in Π, and ∀ observable x . 
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