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Many of the decisions that we make on a daily basis 
(e.g., choices between foods, consumer goods, and 
even complex moral dilemmas) are shaped by attention. 
The decision process is often modeled as an evidence-
accumulation process, through which the potential 
options compete for the participant’s choice. Visual 
attention is known to affect this evidence-accumulation 
process. Past research (Armel, Beaumel, & Rangel, 2008; 
Cavanagh, Wiecki, Kochar, & Frank, 2014; Fiedler & 
Glöckner, 2012; Fiedler, Glöckner, Nicklisch, & Dickert, 
2013; Folke, Jacobsen, Fleming, & De Martino, 2016; 
Krajbich, Armel, & Rangel, 2010; Krajbich, Lu, Camerer, 
& Rangel, 2012; Krajbich & Rangel, 2011; Lim, O’Doherty, 
& Rangel, 2011; Mormann, Navalpakkam, Koch, & Ran-
gel, 2012; Pärnamets et al., 2015; Stewart, Hermens, & 
Matthews, 2016; Towal, Mormann, & Koch, 2013) has 
shown that gaze to an alternative increases the likeli-
hood of choosing that option, even after one accounts 
for the subjective values of the alternatives. These stud-
ies come from a variety of domains, suggesting that 
many decisions are influenced by attention.

Thus far, sequential-sampling models (SSMs) have 
been successfully used to characterize the attention-
influenced decision process (Ashby, Jekel, Dickert, & 
Glöckner, 2016; Busemeyer & Diederich, 2002; Busemeyer 
& Townsend, 1993; Fisher, 2017; Krajbich et al., 2010; 

Krajbich et al., 2012; Krajbich & Rangel, 2011; Krajbich 
& Smith, 2015; Towal et  al., 2013; Vaidya & Fellows, 
2015). The general idea behind these models is that over 
time, evidence is noisily accumulated for each of the 
options; once enough evidence is accumulated for one 
option—relative to the other—the decision is made. 
However, the precise mechanism that underlies the effect 
of attention on the evidence-accumulation process has 
not been established. A couple different SSMs rooted in 
the drift-diffusion model (DDM; Ratcliff, 1978) have been 
proposed thus far, and both are capable of capturing 
several trends in choice and eye-tracking data.

The main thing that differentiates these models is 
the interaction of value and attention. One model pro-
poses that attention gives a fixed, additive boost to the 
evidence accumulated for the gazed-at option (Cavanagh 
et  al., 2014). This additive model posits that gaze is 
indicative of the decision maker’s instantaneous bias 
toward an option, the magnitude of which is indepen-
dent of the option itself. Another model, the attentional 
DDM (aDDM; Krajbich et  al., 2010), suggests an 

810521 PSSXXX10.1177/0956797618810521Smith, KrajbichGaze Amplifies Value in Decision Making
research-article2018

Corresponding Author:
Ian Krajbich, The Ohio State University, Departments of Psychology 
and Economics, 1827 Neil Ave., Columbus, OH 43210 
E-mail: krajbich.1@osu.edu

Gaze Amplifies Value in Decision Making

Stephanie M. Smith1 and Ian Krajbich1,2

1Department of Psychology, The Ohio State University and 2Department of Economics,  
The Ohio State University

Abstract
When making decisions, people tend to choose the option they have looked at more. An unanswered question is how 
attention influences the choice process: whether it amplifies the subjective value of the looked-at option or instead 
adds a constant, value-independent bias. To address this, we examined choice data from six eye-tracking studies (Ns = 
39, 44, 44, 36, 20, and 45, respectively) to characterize the interaction between value and gaze in the choice process. 
We found that the summed values of the options influenced response times in every data set and the gaze-choice 
correlation in most data sets, in line with an amplifying role of attention in the choice process. Our results suggest that 
this amplifying effect is more pronounced in tasks using large sets of familiar stimuli, compared with tasks using small 
sets of learned stimuli.

Keywords
decision making, computational modeling, eye tracking, attention, drift-diffusion model

Received 11/28/17; Revision accepted 9/8/18

http://www.psychologicalscience.org/ps
mailto:krajbich.1@osu.edu


Gaze Amplifies Value in Decision Making 117

interaction between the values of the options and the 
degree to which attention influences the evidence-
accumulation process. In this sense, attention to an 
option amplifies its representation in the mind of the 
decision maker. Thus, according to this multiplicative 
model, attention to higher value options exerts a greater 
effect on choice.

Clearly, these two models represent very different 
mechanisms underlying the link between gaze and 
choice. While the additive model maintains that gaze 
provides a fixed bias in the comparison process, the 
multiplicative model argues that the gaze effect depends 
on the value of the gazed-at option. Consider a choice 
between neutral items: that is, where the value of each 
item equals 0. The additive model predicts that attention 
should have the same effect in this decision as in any 
other decision, whereas the multiplicative model pre-
dicts no effect of attention in this case, because there 
is no value to amplify. The multiplicative model implies 
that attention is tightly embedded in the construction 
of value, whereas the additive account suggests a value-
independent, downstream effect on choice.

The decision-neuroscience literature provides some 
evidence consistent with the multiplicative model. For 
instance, recent work on cue-approach training 
(Bakkour et  al., 2016; Bakkour, Lewis-Peacock, Pol-
drack, & Schonberg, 2017; Schonberg et al., 2014) indi-
cates that trained cuing yields a stronger effect on 
subsequent choices for high-value rewards compared 
with low-value rewards. Specifically, participants 
choose the cued option over an equally valued, non-
cued option at a higher rate when the values of the 
options are high compared with low. Other studies have 
found that choices are faster for higher overall value 
(Hunt et al., 2012; Pirrone, Azab, Hayden, Stafford, & 
Marshall, 2018; Polanía, Krajbich, Grueschow, & Ruff, 
2014). However, none of these studies have examined 
whether these effects might be due to attention. Instead, 
these response time (RT) effects have been taken as 
evidence for nonlinear accumulation dynamics or vary-
ing decision criteria (thresholds). Gaze data are required 
to adjudicate on these competing models.

Here, we used previously collected data from six 
separate eye-tracking experiments. Some of these data 
sets involve food choice, whereas others comprise 
choices between learned, probabilistically rewarded 
symbols. Some of the data come from our lab, whereas 
other data are external.

Because traditional SSM-fitting procedures use only 
choices and RTs, they are not well suited to distinguish 
between the two models. Both models are similarly able 
to capture choice probabilities, RTs, and even the rela-
tionships between gaze and choice documented in  
Krajbich et  al. (2010). To separate the models, we 

focused on qualitative features of the data that differ-
entiate them. In particular, we looked at the relationship 
between RT and the overall (summed) value of the two 
alternatives and found that higher overall value cor-
responds to shorter RTs. Only the multiplicative model 
predicts this relationship; the additive model predicts 
no relationship between overall value and RT. Second, 
we looked at the effect of gaze dwell time on choice 
for differently valued items and found that this effect 
generally increases with the value of the gazed-at item, 
particularly for the food-choice tasks. Again, this is 
consistent with the multiplicative model and not the 
additive model. These results provide consistent sup-
port for the multiplicative effects of attention on choice 
in the food tasks and some support in the learning 
tasks.

Method

Data

We used data from six binary-choice data sets (see Fig. 
1). Four of these data sets comprise choices between 
two food items (Krajbich et al., 2010), whereas the other 
two involve choices between learned stimuli (Cavanagh 
et al., 2014; Konovalov & Krajbich, 2016).

There are a few notable differences between the 
food-choice and probabilistic tasks. In the food-choice 
tasks (Data Sets 1–4), every trial was a choice between 
a unique pair of food items. There were many different 
food items presented to participants in each study, 
ranging from 70 (in Data Set 1) to 147 (in Data Set 2), 
and each choice was different. In the probabilistic tasks 
(Data Sets 5 and 6), on the other hand, participants 
encountered far fewer unique choices. In Data Set 5, 
there were six unique symbols, corresponding to 30 
unique choices. Each of these pairs was presented to 
participants multiple times. In Data Set 6, there were 
only two pairs of symbols. In each trial, participants 
saw one pair or the other. Although the symbols 
remained the same throughout the experiment, each 
symbol’s probability of yielding a reward drifted ran-
domly over the course of the experiment.

In the food-choice tasks, participants received their 
chosen food from one random trial, so there was no 
objectively correct choice, whereas in the probabilistic 
tasks, there was an objectively “correct” option, namely, 
the symbol with the higher probability of reinforce-
ment. In the Konovalov and Krajbich (2016) study, the 
reinforcement was a constant monetary reward, whereas 
in the Cavanagh et al. (2014) study, there was no feed-
back; participants learned about the stimuli in a sepa-
rate training task. Finally, in the Konovalov and Krajbich 
study, participants first made a choice between the 
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same two stimuli. That choice probabilistically led to 
one of two possible second-stage pairs of stimuli. It is 
these second-stage decisions that we analyze here, 
because Konovalov and Krajbich established that the 
first-stage choices were often governed by a different 
choice process. We highlight these differences to point 
out that it would not be surprising to find some varia-
tion in the decision process across experiments.

For each of the four binary-food-choice studies (Data 
Sets 1–4; see Fig. 1a), participants were first asked to 

rate the desirability of a variety of snack foods on a 
scale. They then made a series of incentivized choices 
between two positively rated foods. For the symbolic-
reward studies (Data Sets 5 and 6; see Figs. 1b and 1c), 
participants made choices between symbols that yielded 
probabilistic rewards. Participants ostensibly knew the 
probabilities of reward associated with the symbols 
from feedback. Participants gave written informed con-
sent for all of the studies, and we complied with all 
relevant ethical regulations. We collected Data Sets 2 
through 4 and 6 using an EyeLink 1000 Plus eye tracker 
(SR Research, Ottawa, Ontario, Canada) at The Ohio 
State University, with the approval of The Ohio State 
Institutional Review Board. Below are specific details 
about each of the studies (for additional details, see 
Table S7 in the Supplemental Material available online).

Data Set 1. These data come from the study by Krajbich 
et al. (2010). After rating 70 different food items on a scale 
from −10 to 10, participants (N = 39) made 100 choices 
among non-negatively rated (rating ≥ 0) foods with a 
maximum absolute-value difference of 5 (in a few rare 
cases, this range was wider, but as in the original article, 
we excluded these trials from analysis). The Caltech Com-
mittee for the Protection of Human Subjects Institutional 
Review Board approved the experiment.

Data Set 2. Participants (N = 44) in this study (Smith & 
Krajbich, 2018) rated 147 food items on a scale from −10 
to 10 before making 200 choices among positively rated 
foods (rating > 0). The maximum absolute-value differ-
ence for any trial was 5. Participants in this study also 
completed three other multiattribute choice tasks (200 
trials each, 1 involving gambles between the same foods) 
and another unrelated task at the end of the experiment. 
Participants had to look at a central fixation cross for 1 s 
in order for each trial to begin.

We selected food items for each trial according to 
the following rules: (a) No item was used in more than 
7 trials, and (b) the maximum absolute rating difference 
was 5. For each participant, 10,000 potential trials for 
the task were generated. Trials that did not fulfill criteria 
(a) and (b) were discarded. Some participants (n = 22) 
did not have enough positively rated food items to 
generate 200 valid trials, so these participants com-
pleted as many constraint-satisfying trials as were gen-
erated (M = 171.3). Participants earned a $5 show-up 
fee, additional money from the other tasks, and a cho-
sen food from 1 random trial.

Data Set 3. Participants (N = 44) in this study (Chen & 
Krajbich, 2016) rated 139 food items on a scale from −10 
to 10 and then made 200 choices among nonnegatively 
rated foods (rating ≥ 0). At the conclusion of each trial, 

Fig. 1. Binary-choice paradigms presented to participants in the 
studies from which the present data sets were drawn. In the paradigm 
for Data Sets 1 through 4 (a), participants made choices between two 
snack foods. In the paradigm for Data Set 5 (b), participants chose 
between two hiragana symbols with different probabilities of reward. 
In the paradigm for Data Set 6 (c), participants chose between two 
Tibetan symbols with probabilities of reward that drifted over time.
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the next trial would begin only after the participant had 
stared at the central fixation cross for 1 s. The images in 
this study were designed to be isoluminant.

We selected the items for each trial according to the 
following rules: (a) No item was used in more than six 
trials, and (b) the maximum absolute rating difference 
was 3. An algorithm was used after the rating task and 
before the choice task to ensure that criteria (a) and 
(b) could be satisfied. If they were not, then we 
increased the maximum number of repetitions to seven 
(n = 7) or eight (n = 3). Participants received a $15 
show-up fee and their chosen food from one random 
trial.

Data Set 4. Participants (N = 36) in this study (Gwinn & 
Krajbich, 2016) first made a binary yes/no decision about 
whether they would eat each of 147 food items (the same 
items as in Data Set 2). Next, they rated each “yes” food 
item on a scale from 0 to 10 and indicated their confi-
dence in this rating on a scale from 0 to 7. Last, they 
made 200 choices among the positively rated foods (rat-
ing > 0). The maximum absolute-value difference for 
these choices was 1. We required participants to look at 
the central fixation cross for 1 s before making each 
choice. At the end of the study, participants rated each 
item a second time.

An algorithm generated 200 choices that minimized 
the number of times any item was seen (for a given 
participant) while also preserving the maximum abso-
lute-value difference of 1. Participants received $15 for 
participating and their chosen food from one random 
trial.

Data Set 5. These data come from the study by Cavanagh 
et al. (2014; see Fig. 1b). In an initial training phase, par-
ticipants (N = 20) faced three possible stimulus pairs with 
the following probabilities of being the correct choice: 
A:B (80%:20%), C:D (70%:30%), and E:F (60%:40%). After 
learning to choose the higher probability stimulus in each 
pair, participants proceeded to the test phase. In that 
phase, they chose between all possible pairings of the 
stimuli for 240 trials. The Brown University Institutional 
Review Board approved this experiment.

Data Set 6. This study (Konovalov & Krajbich, 2016; see 
Fig. 1c) involved two-stage decisions. In every trial, par-
ticipants (N = 45) first chose between the same two sym-
bols. Each symbol led to one second-stage state 70% of 
the time and the other 30% of the time. Each of these two 
second-stage states had its own two symbols, each with 
a continuously and independently drifting probability of 
reward. We used these 150 second-stage choices for our 
analysis. We did not use the first-stage choices because 
Konovalov and Krajbich found evidence that many 

participants were making these decisions before trial 
onset and thus were not using an SSM choice process.

Sample size and data exclusions

Data Set 1 (Krajbich et al., 2010) used 39 participants. 
Because the crux of that study was the group-level 
computational modeling of choices, fixations, and RTs, 
the 100 choices made by each participant yielded plenty 
of data with which to conduct the primary modeling 
analyses. Data Sets 2 through 4 and 6 are similar in style 
to those reported in the Krajbich et al. article and had 
similar modeling goals, so their sample sizes of 44, 44, 
36, and 45, respectively, were modeled after the original 
study. Data Set 5 was collected in a different lab, so we 
did not have a say in the sample size.

We were unable to collect data from some partici-
pants because of computer crashes, corrupted data 
files, inability to calibrate the eye tracker, or too many 
negative food ratings (in Data Sets 1–4) to generate 
choices. A priori, we excluded excessively fast decisions—
that is, greater than 250 ms—and excessively slow deci-
sions—that is, more than 2 standard deviations above 
participant-level means, using log(RT)—from analysis 
in all data sets because they were probably due to 
accidental button presses, the participant intentionally 
skipping the trial, or distraction. This resulted in the 
exclusion of 144, 303, 347, 245, 203, and 147 trials for 
Data Sets 1 through 6, respectively, corresponding to 
3% to 4% of trials. Other than this RT exclusion crite-
rion, we used all of the data in the initial data sets 
provided to us.

Computational models

Both models discussed here are extensions of the DDM 
(Ratcliff, 1978). That is, they both rely on a noisy 
sequential-sampling process, by which relative evi-
dence for the two alternatives is accumulated. When 
the evidence in favor of one alternative (relative to the 
other) reaches a predefined boundary, the decision is 
made. The average rate of evidence accumulation is 
called the drift rate (ν) and depends on the difference 
in value between the two alternatives. There are a num-
ber of other essential parameters in the DDM: within-
trial variability in drift rate (σ), nondecision time (ter), 
and boundary separation (a). For the model to be iden-
tifiable, ν, σ, or a must be fixed. Therefore, in the cur-
rent analysis, we fixed boundary separation to 2, as in 
the study by Krajbich et al. (2010), and estimated the 
remaining parameters (plus the attentional parameters: 
θ and η). These models differ from the traditional DDM 
because they incorporate the effects of attention on 
choice. More specifically, both models assume that the 
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drift rate changes with each shift in gaze. However, the 
models differ in how this change occurs.

The multiplicative model (aDDM; Krajbich et  al., 
2010) assumes that attention to one alternative results 
in the discounting of the value of the other alternative 
for the duration of the gaze. So, the drift rates (ν) in 
the aDDM are as follows:

gaze left:ν = −d U UL R( )θ

gaze right:ν = −d U UL R( )θ

Here, UL and UR are the subjective values (i.e., utilities) 
of the left and right alternatives, respectively, d is a 
scaling parameter for the values, and θ is the multiplica-
tive attentional discounting parameter. Specifically, it 
discounts the value of the item not looked at by a frac-
tion of this item’s value.

On the other hand, the additive model assumes that 
attention to one alternative simply adds momentary 
evidence for that option. Thus, the drift rates in the 
additive model are as follows:

gaze left:ν = − +d U UL R( )η

gaze right:ν = − −d U UL R( )η

Here, the attentional effects are captured with the 
parameter η, which adds a fixed boost to the looked-at 
alternative, regardless of its value. The consequences 
of these differences play out in the evidence-accumu-
lation process. Specifically, the multiplicative model 
demonstrates more drastic shifts in the drift rate for 
choices between options with higher values, whereas 
the additive model’s drift-rate shifts are constant (see 
Fig. 2). We fitted both models to all six data sets. See 
the Supplemental Material for more information.

Results

RT versus overall value

The two models (multiplicative and additive) differ in 
their predictions about how the overall value of the 
alternatives should influence the time it takes to 
respond. The drift rates in the additive model, as in the 
standard DDM, depend only on the difference in values 
(see Fig. 2). When analyses control for value difference, 
the overall value should have no effect on the decision 
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Fig. 2. Illustration of the effects of attention on the choice process, separated by model (multiplicative and 
additive) and overall value (left value + right value). In the multiplicative model, higher overall value leads 
to greater shifts in the drift rate (i.e., slope of the black line) as gaze shifts back and forth between the left 
(L) and right (R) alternatives. On the other hand, the additive model does not predict any difference in the 
drift-rate shifts for high versus low overall value.
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because all that matters is the net evidence (given by 
the difference in value between the alternatives); evi-
dence for one option is evidence against the other.

Conversely, in the multiplicative-attention model, the 
overall value of the alternatives does matter. The higher 
the values, the bigger the change in drift rate when 
gaze shifts from one alternative to the other. For exam-
ple, the standard DDM suggests equal drift rates for a 
choice between two options with a value of 1 and a 
choice between two options with a value of 5; in both 
cases, the drift rate is 0. In the DDMs with attention, 
there are two possible drift rates, depending on the 
gaze location, which average out to the same drift rate 
as in the standard DDM. In the additive-attention model, 
the drift rates in both of these trials are ±η. In the 
multiplicative-attention model, the drift rates are ±(1 – θ)  
and ±(5 – 5θ), respectively. Because of this difference 
in the magnitudes of the drift rates in the multiplicative 
model, the latter trials will generally reach a boundary 
more quickly, resulting in shorter RTs (see Fig. 2). Thus, 
the multiplicative model, but not the additive model, 
predicts faster decisions for higher overall values.

To verify this prediction, we simulated data sets with 
both models (for more details, see the Supplemental 
Material), using choice problems from Data Set 2 and 
parameters taken from the study by Krajbich et  al. 
(2010), and estimated the following regression model:

log ~ ( ).RT( ) + − + +β β β0 1 2U U U UL R L R

The coefficient β2 is the primary variable of interest, but 
it is important to account for the difference in value 
between the two alternatives because participants decide 
faster in scenarios with higher value differences.

As expected, the multiplicative-model simulations dis-
played a negative relationship between RT and overall 
value (β2 = −0.013 s per rating, 95% confidence interval, 
or CI = [−0.014, −0.012], p < .001), whereas the additive-
model simulations did not (β2 = −0.0004 s per rating, 
95% CI = [−0.001, 0.0003], p = .299; see Figs. 3a and 3b). 
Without taking value difference into account, the 
additive-attention model exhibits a relationship between 
RT and overall value that is U shaped because extreme 
overall values correspond to small value differences.

Next, we examined the relationship between RT and 
overall value in the data (see Fig. 3c). We estimated full 
mixed-effects versions of the same model from above, 
for each of the six data sets. As in the multiplicative-
attention simulations, we found significantly negative 
β2 coefficients in every case, indicating that an increase 
in overall value (UL + UR) corresponds to a decrease in 
RT (see Table 1). Remarkably, after rescaling the values 
from Data Sets 5 and 6 to the same range (0–10) as in 
Data Sets 1 through 4, the average β2 coefficient across 

studies was −0.011 s per rating, compared with −0.013 
s per rating in the simulations. Similarly, when we used 
all data sets in one analysis (with variables standardized 
at the data-set level), we found that the relationship 
between overall value and logged RT was significantly 
negative (mixed-effects model: β2 = −0.122, 95% CI = 
[−0.142, −0.101], p < .001).

To more directly test the relationship between overall 
value and RT, we ran a similar mixed-effects regression 
but used only the trials with a value difference equal 
to zero (the data from Cavanagh et al., 2014, did not 
have any trials of this nature, so we did not run this 
analysis on that data set). This allowed us to discard 
the value-difference variable, simplifying the model:

log ~ ( ).RT( ) + +β β0 1 U UL R

The negative β1 coefficient in every data set, signifi-
cant in four out of five (see Table 2), confirmed the 
inverse relationship between overall value and RT, pro-
viding additional support for a multiplicative role of 
attention on choice.

These results were also replicated at the individual 
level. A mean of 81% (87%, 84%, 86%, 67%, 85%, and 
77% in Data Sets 1–6, respectively) of the participants 
exhibited a negative relationship between overall value 
and logged RT, after we controlled for absolute-value 
difference (as in Table 1). The remaining participants 
(who did not have a negative relationship between 
overall value and RT) did not align well with the addi-
tive model either, generally showing a positive or flat 
relationship between overall value and RT, rather than 
the parabolic shape seen in Figure 3b.

Modeling the value–attention interaction

Another way to test for the mechanism driving the 
effects of attention on choice is to model the interaction 
between value and gaze. According to the multiplicative 
model, attention to options with greater value should 
have a greater influence on choices, relative to attention 
to options with lower value. The additive model, on 
the other hand, posits that the value of the gazed-at 
option should not influence the effect of attention on 
choice. Returning to our earlier example (see Fig. 2), 
one can see that the shift in drift rates due to attention 
is constant in the additive model but increases with 
overall value in the multiplicative model.

To verify this prediction, we used the same simula-
tions from before and regressed choice outcome (choose 
left) on the value difference (UL – UR) between the items, 
the overall value (UL + UR), and the left-dwell proportion 
(dwell time for the left option as a fraction of total dwell 
time) separated into two cases: one with the left value 
less than the median value in the group data set and 
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one with the left value greater than or equal to the 
median value in the group data set. In other words, in 
each trial, only one of the left-dwell-proportion vari-
ables had a nonzero value. More explicitly, we esti-
mated the following logistic model:

choose left

left dwell proportion

~

( )|

β β β
β

0 1 2

3

+ + +−( ) +( )U U U UL R L R
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( )) ( )|
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Fig. 3. Predictions of the multiplicative model and additive model about the relationship between overall value (left value + right value) 
and average response time (RT), as well as results from the actual data. The multiplicative model (a) predicts a decrease in RT as overall 
value increases, as a result of larger shifts in the drift rate. In the additive model (b), the drift rate depends only on the value difference, 
so the shortest RTs occur in situations with higher value differences. In these simulated data, based on choice problems from Data Set 2, 
the trials with the lowest and highest overall values have very small value differences, which create the U shape. The relationship between 
overall value and RT (c) is shown separately for each of the data sets (Ns = 39, 44, 44, 36, 20, and 45 for Data Sets 1 to 6, respectively). 
In all panels, black circles are data points—simulated data in (a) and (b) and actual data in (c)—and error bars show standard errors of 
the mean across participants. The blue, red, and green lines are simple linear regressions fitted to the data. For the parameters used to 
generate data in (a) and (b), see the Supplemental Material available online.
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Then, we plotted the values of β3 and β4 (see Figs. 4a 
and 4b). The multiplicative model, as expected, showed 
a smaller left-dwell-proportion coefficient for low val-
ues (β3 = 5.423) than for high values (β4 = 7.029), as 
shown by the nonoverlapping 95% CIs (95% CI for β3 = 
[5.292, 5.554]; 95% CI for β4 = [6.868, 7.191]). The addi-
tive model, on the other hand, had equivalent coeffi-
cients for low values (β3 = 5.750) and high values 
(β4 = 5.757), as shown by the nearly indistinguishable 
95% CIs (95% CI for β3 = [5.602, 5.900]; 95% CI for 
β4 = [5.584, 5.932]).

We observed a positive difference between high and 
low values in five out of six data sets (see Fig. 4c). 
Results of one-tailed paired-samples t tests on each indi-
vidual data set were mostly marginal or nonsignificant—
Data Set 1: t(37) = 1.99, p = .027; Data Set 2: t(43) = 
1.20, p = .119; Data Set 3: t(43) = 0.74, p = .233; Data 
Set 4: t(32) = −0.57, p = .713; Data Set 5: t(19) = 1.00,  
p = .166; Data Set 6: t(42) = 1.44, p = .079. Combined, 
however, they revealed a significant difference in the 
expected direction, t(221) = 2.25, p = .013.

Estimating the effect of attention with a median split 
allowed us to avoid imposing the assumption that value 
had a linear effect on the relationship between dwell 
proportion and choice. However, we also ran a simpler 
linear interaction model at the individual level for each 
data set. The results of this analysis support a multipli-
cative effect in the food-choice studies but not the learn-
ing studies (see Fig. S7 in the Supplemental Material).

Alternative additive model with value-
contingent bounds

The two models discussed so far have the same number 
of parameters and are therefore easily comparable. 
However, Cavanagh et al. (2014) found that their model 
fitted better when allowing for trial-level, value-related 
changes in the boundary separation during the model-
fitting process. Note that in diffusion modeling, 
researchers typically assume that the decision boundar-
ies do not vary as a function of the choice options but 
rather as a function of time pressure, speed/accuracy 
instructions, and so on (Ratcliff & McKoon, 2008). Nev-
ertheless, we simulated an additive model with bound-
aries that linearly decrease to one half the original 
separation across the range of overall values (i.e., the 
boundaries were set to ±1 for overall value = 2 and ±0.5 
for overall value = 20). More details about this alterna-
tive model can be found in the Supplemental Material. 
With these boundaries, the additive model can account 
for the inverse relationship between overall value and 
RT (see Fig. 5; β = −0.0384, 95% CI = [–0.0392, –0.0377], 
p < .001).

However, this alternative model did not yield the same 
interaction between value and gaze as in the multiplica-
tive model and data (see Fig. 4). In fact, the interaction 
was negative with this alternative model (see Fig. 5); 
thus, it is refuted by the data. We do acknowledge that 
this is only one example of value-dependent bounda-
ries, but it does serve as an illustrative tool. What matters 
is that when the boundaries were tighter, we saw a 
smaller effect of gaze on choice with the additive model 
(see Fig. S4 in the Supplemental Material). Therefore, 
an additive model in which the boundaries tighten with 
higher overall value cannot account for the positive 
value-attention interaction observed in the data.

Modeling results

The previous analyses highlight key differences between 
the additive and multiplicative attention DDMs and 
indicate an advantage for the multiplicative model. 
However, it is important to note that the two models 
otherwise provide quite similar fits to the data. To see 
this, we fitted all of the data sets with the additive and 
multiplicative models (see the Supplemental Material). 
Both models can account for some overarching trends 
in the data (see Fig. 6). For instance, both display the 
inverse relationship between RT and value difference, 
and both capture the tendency for participants to 
choose the last option that they looked at (Konovalov 
& Krajbich, 2016; Krajbich et al., 2010).

It is natural to want to compare the models on the basis 
of overall goodness of fit. However, such comparisons 

Table 1. Results of the Regressions on the Relationship 
Between Overall Value and Response Time

Data set β2 95% CI t

1 −0.013 [−0.019, −0.008] −4.78
2 −0.009 [−0.013, −0.006] −5.47

3 −0.010 [−0.012, −0.008] −8.36
4 −0.005 [−0.008, −0.003] −3.92
5 −0.202 [−0.284, −0.119] −4.87
6 −0.178 [−0.249, −0.111] −5.21

Note: CI = confidence interval.

Table 2. Results of the Regressions on the Relationship 
Between Overall Value and Response Time in Trials With a 
Value Difference Equal to 0

Data set β1 95% CI t

1 −0.007 [−0.017, 0.002] −1.60
2 −0.009 [−0.015, −0.004] −3.38
3 −0.006 [−0.009, −0.003] −3.59
4 −0.005 [−0.009, −0.0002] −2.06
6 −0.246 [−0.364, −0.138] −4.48

Note: CI = confidence interval.
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may depend on how these statistics are calculated. Even 
with standard DDM fitting, there are a variety of meth-
ods, and in our setting, we wished to account for the 
eye-tracking data. One method, in which we condi-
tioned the data on whether the participant looked at 
the chosen item last, yielded roughly equivalent fits for 
the two models (see Tables S2 and S3 in the Supple-
mental Material). Another method, conditioning the 
data on dwell-time differences, yielded better fits for 
the multiplicative model (see Tables S4 and S5 in the 

Supplemental Material). It is important to note that 
neither of these methods conditioned the data on over-
all value during the fitting process.

To additionally investigate the attention–value inter-
action, in line with the study by Cavanagh et al. (2014), 
we estimated several models using a hierarchical drift 
diffusion model (HDDM; Wiecki, Sofer, & Frank, 2013). 
The HDDM analyses confirmed multiplicative effects for 
Data Sets 1 through 4 with Bayesian posterior probabili-
ties of 1, .993, 1, and .9885, respectively. On the other 

Data Set 1 Data Set 2 Data Set 3

a b
β i

β i

c
Low High

Left Value
Low High

Left Value

Data Set 4 Data Set 5 Data Set 6

Low High
Left Value

Low High
Left Value

Low High
Left Value

β i

Fig. 4. Predictions of the multiplicative model and additive model about the effects of the interaction between attention and value on 
choice, as well as results from the actual data. The multiplicative model (a) predicts an increasing effect of attention on the choice process 
(βi) as the value of the looked-at alternative increases, whereas the additive model (b) predicts that the influence of attention is constant, 
regardless of the value of the looked-at alternative. The relationship between choice and the interaction between attention and value (c) 
is shown separately for each of the data sets (Ns = 39, 44, 44, 36, 20, and 45 for Data Sets 1–6, respectively). In all panels, black circles 
are data points—simulated data in (a) and (b) and actual data in (c)—and error bars show standard errors of the mean across subjects. 
See the Supplemental Material available online for odds-ratio results (see Fig. S6) and for parameters used to generate data in (a) and (b). 
Participants who did not have enough observations in either the low- or high-value bin to generate a coefficient were excluded from this 
analysis (n = 6 across all data sets).
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hand, the results were more equivocal for the learning 
tasks (Data Sets 5 and 6), with a Bayesian posterior 
probability of .391 for multiplicative effects in Data Set 
5 and either .025 or 1 in Data Set 6, depending on 
whether we used subjective or objective values in the 
model. For further information on these analyses, see 
the Supplemental Material.

Discussion

In this article, we presented two ways in which gaze 
might influence the decision process. Gaze might pro-
vide a constant bias in favor of the attended option 
(additive model), or it might amplify the value of that 
option (multiplicative model). Using six different data 
sets from multiple labs and using multiple paradigms, 
we found substantial evidence in favor of multiplicative 
effects. Specifically, attention to a given alternative 
interacts with the value of said alternative such that 
gaze to higher valued options has a greater influence 
on choice than gaze to lower valued options. This rela-
tionship was most evident in tasks using large sets of 
familiar stimuli, compared with small sets of learned 
stimuli.

One finding that distinguishes between the two pro-
posed mechanisms (additive and multiplicative) is the 
inverse relationship between overall value and RT. This 
highlights that RTs are not simply a function of the 
value differences (as is often assumed; e.g., Ashby 
et al., 2016). These factors need to be accounted for in 
model comparisons. In the multiplicative model (the 
aDDM; Krajbich et al., 2010), the average drift rate is a 
function of not only the difference in value between 

the options but also the values themselves. The simple 
additive model, on the other hand, cannot account for 
this finding because the drift rate is purely a function 
of the difference in value between the two alternatives. 
Some other SSM frameworks (Lo & Wang, 2006; Ratcliff, 
Voskuilen, Teodorescu, 2018; Usher & McClelland, 
2001) do predict faster decisions for higher overall 
value, but they do not account for the relationship 
between gaze and choice.

The interaction between value and the effect of 
attention was generally positive and, overall, significant 
in the data sets that we examined. The aDDM and the 
additive model differ in their predictions about this 
relationship: While the aDDM predicts a positive value–
attention interaction, the additive model predicts a con-
stant effect of attention, regardless of the value of the 
looked-at option.

It is worth briefly discussing the three data sets with 
the weaker effects of overall value on attentional influ-
ence. Data Set 4 was from an experiment investigating 
the role of attitude accessibility and confidence on the 
choice process. Participants were exposed to each item 
many times, and so they may have had more well-
formed preferences than is typical. In Data Sets 5 and 
6, participants saw very few stimuli (six in each choice 
task). In Data Set 5, the values of these stimuli were 
learned in a prior training task, whereas in Data Set 6, 
the values of the stimuli varied over time.

Data Set 5 was originally found to support the addi-
tive model rather than the multiplicative model, on the 
basis of HDDM fits (Cavanagh et al., 2014). Our own 
fits to those data yielded more equivocal results. For 
instance, the analysis shown in Figure 4 suggests a 

a
RT

 (s
)

Overall Value
Low High

Left Value

b

β i

Fig. 5. Results from the alternative version of the additive model with tighter bounds for higher overall value. The scatterplot (a) 
shows the relationship between average response time (RT) and the overall value of the options. Thus, the model can account for the 
inverse relationship between overall value and RT. Attentional-influence coefficients (using the same model as in Fig. 4) are plotted in 
(b) against the values of the gazed-at option. According to this model, attention to higher valued alternatives corresponds to a lesser 
effect on choice. Thus, this alternative model cannot account for the positive interaction between value and the effect of attention 
observed in the data (see Fig. 4). In each plot, the black dots are model-generated simulations (see the Supplemental Material avail-
able online), and the red line is a simple fitted regression line through the simulations.
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slightly positive interaction in this data set, whereas our 
supplemental interaction analysis (see Fig. S7) suggests 
a slightly negative interaction. Visualizations of the 
effect of dwell time on choice (see Fig. S1 in the Sup-
plemental Material) show multiplicative effects for large 
value differences but not for small value differences. 
Similarly, one model-fitting technique (HDDM) slightly 
favored the additive model, whereas the others (DDM) 
favored the multiplicative model. The discrepancy 
could be due to the assumptions of each fitting method, 
especially if these data were not all generated by a 
diffusion-model process, which is a concern given the 
small number of unique trials.

On a similar note, Data Set 6 was used by its original 
authors (Konovalov & Krajbich, 2016) to argue that 
participants in that task often knew ahead of time what 
they were going to choose and so may not have always 
been using a DDM process. It is not a surprise, then, 

that the multiplicative effects of attention are somewhat 
obscured in this data set.

Although our results support a multiplicative effect, 
we have not yet ruled out the possibility that there are 
also additive effects. There are a few ways to address 
this issue. One way to rule out the additive effect is to 
examine the main effect of dwell proportion, which in 
our model corresponds to the case in which the value 
is equal to 0 and thus captures a pure additive effect. 
Regression results here revealed a significant additive 
effect in four of the six data sets (see Fig. S7). A second 
way to check for additive effects is with formal DDM 
fits. The results from these analyses also suggest that 
there may be additive gaze effects (see Table S6 in the 
Supplemental Material). There are caveats to these 
results, though. As mentioned above, the multiplicative 
model assumes no effect of gaze on choice for zero-
value items. This means that arbitrary shifts in the value 
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Fig. 6. Examples of the effects that both the additive and multiplicative models can explain. Both models can predict (a) choice proportions 
as a function of the value difference between the options (here, in Data Set 5, N = 20). Both models predict (b) the inverse relationship 
between response time (RT) and the absolute-value difference observed in the data, in which the fastest decisions are those with the highest 
absolute-value difference, and the slowest decisions are those with the lowest absolute-value difference (here, in Data Set 1, N = 39). Both 
models predict (c) a last-look bias, such that participants are more likely to choose the last option they look at, unless the last-seen option is 
sufficiently worse than the alternative (here, in Data Set 3, N = 44). Both models predict (d) an increase in choice probability as the relative 
dwell time for an option increases (here, in Data Set 2, N = 44). In all panels, the black symbols are data points (with standard errors of the 
mean across participants), the blue dashed line is the best-fitting multiplicative model (see the Supplemental Material available online), and 
the red dotted line is the best-fitting additive model (see the Supplemental Material). L = left, R = right.
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scale will affect the main effect of dwell proportion and 
change how well the multiplicative model fits the data. 
The goodness of fit for the multiplicative model (but 
not the additive model) will worsen if the measured 
zero point does not correspond exactly to the true zero 
point. What this means is that a main effect of dwell 
proportion or worse fit for the multiplicative model 
could simply be due to an incorrect assumption about 
the zero point on the value scale.

Our findings also allow us to weigh in on the direc-
tion of causality between attention and choice. Although 
some authors have posited that attention drives choices 
(Armel et al., 2008; Mormann et al., 2012; Pärnamets 
et al., 2015; Reeck, Wall, & Johnson, 2017; Towal et al., 
2013; Zoltak, Veling, Chen, & Holland, 2018), a constant 
challenge to this assertion is the possibility that atten-
tion is merely indicative of emerging preferences 
(Shimojo, Simion, Shimojo, & Scheier, 2003). This latter 
explanation seems unlikely given our results. Without 
the amplifying effects of attention on value, the DDM 
would require additional ad hoc assumptions to explain 
why high overall value choices are faster and more 
strongly tied to gaze.

Ultimately, this research demonstrates that the mech-
anism underlying the attention–choice link is not a 
simple boost to the evidence accumulated for the 
gazed-at option but a more complex interaction that 
takes into account the values of the options, especially 
in choices from large sets of familiar stimuli (e.g., food 
choices). The aDDM is one such model that captures 
this multiplicative effect. There are likely other instan-
tiations that can account for the patterns discussed in 
this article, but the aDDM is the simplest extension of 
the DDM capable of capturing the multiplicative role 
of attention in choice.
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