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Is there such thing as too many options, too many 
virtues, or too many examples in an opening sentence? 
Researchers are often interested in such possible 
U-shaped relationships, in which the effect of x on y is 
hypothesized to be positive for low values of x, but 
negative for high values of x (or vice versa). Just among 
articles published online in 2016, for instance, I found 
two articles testing U-shaped relationships in a nonex-
haustive search of each of the following four journals: 
Journal of Experimental Psychology: General (Payne, 
Brown-Iannuzzi, & Loersch, 2016; von Bastian, Souza, 
& Gade, 2016), Psychological Science (Choi & Kirkorian, 
2016; Loschelder, Friese, Schaerer, & Galinsky, 2016), 
Journal of Personality and Social Psychology ( Jaspers & 
Pieters, 2016; Josef et al., 2016), and Journal of Applied 
Psychology (Koopmann, Lanaj, Wang, Zhou, & Shi, 2016; 
Wilson, DeRue, Matta, Howe, & Conlon, 2016).

Here, I identify, and provide a remedy for, a large 
and pernicious disconnect between the predictions that 
social scientists make when they hypothesize that a 

relationship is U shaped and the statistical test they run 
to examine if a relationship is U shaped.

In particular, when social scientists hypothesize that 
a relationship, y  f (x), is U shaped, they are merely 
hypothesizing that f (x) contains a sign change: For low 
values of x, its effect on y is positive, f (x)  0, whereas 
for high values of x, the effect is negative, f (x)  0—or 
vice versa. As Lind and Mehlum (2010) wrote in their 
methodological article on U-shape testing, “to test . . . 
for the presence of a U shape . . . we need to test 
whether the relationship is decreasing at low values  
. . . and increasing at high values” (p. 110). Just a sign 
change is, for example, what the hypotheses from the 
eight articles cited in the opening paragraph predicted, 
what was hypothesized in all the articles reviewed by 
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Grant and Schwartz (2011) in their examination of 
U-shaped effects in psychology, and what the classic 
Yerkes-Dodson “law” involves.

Nevertheless, when it comes to testing empirically 
whether f (x) is U shaped, social scientists do not just 
examine if it exhibits a sign change. They instead esti-
mate a quadratic regression of the form y  bx  cx2 
and then rely on its estimates, which are strictly valid 
only if the arbitrarily assumed quadratic functional form 
is exactly true, to evaluate if the results imply a sign 
change in f (x).

Researchers are so used to testing for U shapes with 
quadratic regressions that they often use the terms U shape 
and quadratic as synonyms, though these terms in fact 
describe distinct features of mathematical functions.1 
For instance, the relationship between the standard 
deviation and the variance is quadratic, V  (SD)2, but 
it is not U shaped. Conversely, y  log(x) – 2x, is U 
shaped but not quadratic: The y values are not propor-
tional to the square of the x values.2

Assuming a quadratic functional form when the func-
tional form is not quadratic can elevate the rates of 
false-positive and false-negative results in testing for U 
shapes. Elevation of the false-positive rate is especially 
likely when the true function, f (x), flattens out (e.g., a 
ceiling effect), because the quadratic formula is unable 
to generate a long plateau and so, when its functional 
form is forced on the data, it generates a spurious sign 
change. For instance, the quadratic regression can, 
under realistic circumstances, yield a 100% false-positive 
rate, indicating with near certainty every time that, for 
example, y  log(x) is a U-shaped relationship even 
though it is not (e.g., look ahead at Fig. 2a). Under 
other circumstances, it can also plausibly yield a 100% 
false-negative rate, indicating with near certainty every 
time that a relationship that is blatantly U shaped is not 
U shaped (e.g., look ahead at Fig. 3).

In this article, I propose that to test for the presence 
of a U-shaped relationship, we rely instead on two 
regressions lines—one for low values of x, the other for 
high values of x—and verify that one slope is positive 
and the other negative. The advantage is that regression 
lines can diagnose the sign of the average effect without 
making functional-form assumptions about f (x). This two-
lines approach has on occasion been used as an informal 
robustness test to follow up the estimation of a quadratic 
regression (see, e.g., Iribarren, Sharp, Burchfiel, Sun, & 
Dwyer, 1996; Qian, Khoury, Peng, & Qian, 2010; Seidman, 
2012; Ungemach, Stewart, & Reimers, 2011).

The contributions of this article are that it (a) explains 
why we must discontinue relying on quadratic regres-
sion, in any way, to test hypotheses involving U-shaped 
relationships; (b) formalizes the two-lines approach to 
testing for U shapes; and (c) introduces the Robin Hood 
algorithm to identify the break point for the two lines 

and demonstrates that this algorithm provides higher 
statistical power for U-shape detection than a variety 
of alternatives considered.

Defining U Shaped

The symbol used to represent U-shaped relationships, the 
letter U, consists of an uninterrupted line, is symmetric, 
includes a flat portion in the bottom, and includes both 
a negatively sloped and a positively sloped section. When 
social scientists refer to a relationship as U shaped, how-
ever, they imply only that last property: the sign change.

When predictors are not continuous (e.g., they take 
only five possible values), researchers and methodolo-
gists use the “U shape” label anyway to describe an 
effect for which the sign flips (see, e.g., Cohen, Cohen, 
West, & Aiken, 2003, p. 576; Simonton, 1976). When 
the function is not symmetric (e.g., when it exhibits a 
negative effect for ages 15 up to 75 years and a positive 
one only for ages 75 to 95 years), researchers use the 
“U shape” label to describe the sign change as well 
( Jaspers & Pieters, 2016). When the functional form 
lacks a flat portion and the effect switches abruptly 
from negative to positive, researchers also use the “U 
shape” label to describe the sign change (see Choi & 
Kirkorian, 2016, Fig. 3). Relying on the same terminol-
ogy, in this article I use the “U shape” label to imply 
only a sign change in f (x), without implying that f (x) 
has any of the other characteristics of the letter U.

Neither the two-lines test proposed here nor the 
quadratic-regression-based tests for a U shape statisti-
cally distinguish between continuous and discontinuous 
U shapes, between symmetric and asymmetric U shapes, 
or between U shapes with and without flat portions 
(the quadratic regression implicitly assumes that f (x) 
is continuous, but does not test whether it is). Thus, 
researchers interested in assessing these additional fea-
tures of f (x) need to run additional statistical tests, not 
just a U-shape test, whether they rely on the quadratic 
regression or on the two-lines test.

Disclosures

The original data and R code to reproduce all the figures 
are available at https://osf.io/psfwz/. The appendix 
presents the table of contents for the Supplemental 
Material available online (at http://journals.sagepub 
.com/doi/suppl/10.1177/2515245918805755).

Two Average Slopes

Following the definition in the previous section, let us 
formally define a function, y  f (x), as U shaped if there 
exists an x value, xc, within the set of possible x values, 
such that the average effect of x on y is of opposite 
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sign for x  xc and x  xc. The null hypothesis is that 
no such xc value exists, and the alternative hypothesis 
is that at least one such xc value exists.3

To test if the effect of x on y changes sign for x  xc 
versus x  xc, we need to set the value of xc and then 
compute two average slopes, one for x  xc and one 
for x  xc. I discuss the issue of setting the break point 
later on but for now focus on the benefits of using two 
regression lines to estimate the two average slopes.

Linear regressions compute the average slope in the 
data for the effect of x on y, regardless of the underly-
ing functional form (see, e.g., Gelman & Park, 2008).4 
Therefore, to compute two average slopes, we may 
simply estimate two regression lines (one for x  xc and 
another for x  xc). We can then reject the null hypoth-
esis of absence of a U shape if the slopes are of oppo-
site sign and are both statistically significant.

It is very important to understand that the regression esti-
mate is the average slope for any functional form, and thus 
we are not assuming that the true function is linear when we 
compute the average this way. Say the true relationship is y  
x2, and thus not linear, and the data consist of three observa-
tions, x  1, 2, 3 and thus y  1, 4, 9. The slope between the 
first two points is (4 – 1)/(2 – 1)  3, the slope between the 
last two points is (9 – 4)/(3 – 2)  5, and the slope 
between the first and last points is (9 – 1)/(3 – 1)  4. 
So, the average slope is (3  5  4)/3  4, and a linear 
regression will correctly recover this average slope.5

That regression estimates correspond to the average 
slope in the range of data no matter what underlying 
form f (x) has does not mean that the two-lines test is 
valid under all circumstances or that it constitutes a 
nonparametric test. First, if the true relationship has 
more than one sign change (e.g., if it is W, N, or X 
shaped), the two-lines test may correctly but mislead-
ingly indicate that one portion has on average a positive 
slope and the other a negative one, leading a researcher 
to erroneously classify a W-, N- or X-shaped relation-
ship as U shaped (for more on this point, see the Limi-
tations section). Second, because the two-lines test 
relies on linear regression, anything that affects the 
validity, interpretability, bias, robustness, or efficiency 
of linear regressions also affects the validity, interpret-
ability, bias, robustness, or efficiency of the two-lines 
test. For example, lack of independence across observa-
tions leads to underestimated standard errors in regres-
sion results in general and to higher false-positive rates 
with the two-lines test in particular.

The Misuse of Quadratic Regressions 
to Test for a U Shape

The sophistication with which results from quadratic 
regressions are interpreted in U-shape testing can be 
classified into three levels according to how many 

additional calculations are conducted after obtaining 
the regression results.

Level 1: Is the quadratic term significant?

The most basic approach involves checking if the 
estimates of a and b in y  ax  bx2 imply a U-shaped 
function and if the estimate of b is statistically signifi-
cant. This approach is advocated in some prominent 
textbooks. For example, Cohen et  al. (2003) wrote, 
“The [quadratic] coefficient is negative [and signifi-
cant] . . . , reflect[ing] the hypothesized initial rise 
followed by decline” (p. 198; italics added). The sig-
nificant coefficient need not, in fact, imply a U-shape 
relationship.6

An article by Simonton (1976), which has been cited 
about 150 times, illustrates. One key inference from his 
analysis of correlates of the eminence of “geniuses” was 
that “ranked eminence is . . . a curvilinear inverted-U 
function of education” (p. 218). The point estimates of 
interest, within a larger specification, were y  4.872x  –  
11.96x2, where y was the measure of eminence and x 
the measure of education (see the estimates in his Table 
2, p. 223). Figure 1 here shows that within the range 
of possible values, the regression results do not imply 
a U shape. For every possible value of x, higher x is 
associated with lower y. Only for negative (impossible) 
values of x is the sign positive, and hence the overall 
pattern is U shaped only if those values are included. 
Note that the estimated correlation between education 
and eminence is opposite the intuitive causal effect one 
might expect.

Level 2: Is the sign flip within the 
range of values?

At the next level, a quadratic regression is interpreted 
as providing evidence for a U-shaped relation only if 
the estimate of b is statistically significant within the 
range of observed, or at least possible, x values. Some 
researchers have carried out this additional step in their 
published articles (it is also illustrated by the preceding 
discussion of Fig. 1). For example, Berman, Down, and 
Hill (2002) wrote, “The value [at which the sign flips] 
is actually above any value observed in the data, sug-
gesting that, although negative returns are a theoretical 
possibility, they are not encountered” (p. 23). Even with 
this step, however, it is problematic to conclude that 
the relationship is U shaped, because we need to take 
into account sampling error. We assume that the true 
relationship is y  ax  bx2, but we do not observe a 
and b and instead observe estimates â and b̂ . As esti-
mates, they contain error, and therefore, our estimate 
of the point at which the effect of x on y flips sign, 
(– ˆ/a 2b̂), also contains error.7
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Level 3: Is the sign flip statistically 
significant within the range of values?

Noting that a quadratic term is simply an interaction of 
a variable with itself (see, e.g., McClelland & Judd, 1993, 
p. 382), we can take into account sampling error in 
analyses of quadratic regression estimates in general, 
and in analyses of the point where the effect of x on y 
flips sign in particular, as we do for any regression inter-
action. In particular, we may estimate the effect of x on 
y, and its confidence interval and/or p value, for different 
values of x. This general approach to analyzing interac-
tions was first introduced by Johnson and Neyman 
(1936). It is sometimes known as the pick-a-point or 
spotlight approach when applied to a handful of  
x values, and as the floodlight, or Johnson-Neyman, 
procedure when applied to all of them or to the critical 
x values where the slope changes between being statisti-
cally significant and not being statistically significant 
(Aiken & West, 1991; Preacher, Curran, & Bauer, 2006; 
Spiller, Fitzsimons, Lynch, & McClelland, 2013). In recent 
years, a few articles have explicitly suggested relying on 
this Johnson-Neyman procedure to analyze quadratic-
regression result when testing for U-shaped relationships 
(Lind & Mehlum, 2010; Miller, Stromeyer, & Schwieterman, 
2013; Spiller et al., 2013).8

Even this more sophisticated use of quadratic regres-
sions to test for a U shape is invalid, however. The 
reason is that the regression results, and therefore the 
Johnson-Neyman calculations, hinge on the assumption 

that the true relationship between x and y is exactly 
quadratic. Figure 2 provides realistic examples of cases 
in which the assumption is not met and the conclusions 
are erroneous.

Figure 2a shows a scenario in which the true relationship 
is y  log(x) and a quadratic regression would result in  
ŷ  13.94x – 10.45x2. In this equation, the effect of x on 
y is, dy/dx  13.96 – 2 * 10.45x. When x  0.25, the effect 
of x is positive, 8.735, but in contrast, when x  0.75, 
the effect is negative, −1.71. Of course, that result is 
wrong, as the effect of x is never negative when y  
log(x), but it is estimated as negative because we are 
incorrectly assuming that the relationship is quadratic. 
Specification error is behind the erroneous conclusion. 
Figures 2b and 2c provide additional examples of qua-
dratic regression leading to misdiagnosis of a U-shaped 
relationship.

Assuming a quadratic relationship may also lead to 
false negatives, failure to diagnose U-shaped relation-
ships that are present, even when the sample size is 
infinite. This will occur when the true relationship is U 
shaped but deviates sufficiently from the quadratic 
shape (see Fig. 3).

The quadratic regressions in Figures 2 and 3 perform 
poorly because they minimize the sum of squared 
errors, ( ŷ – y)2 without taking into account overall 
shape. During the model-fitting process, there is no 
penalty if obtaining a better fit requires outputting a 
quadratic function that generates a nonexistent U shape 
or misses a real U shape.

Fig. 1. Example of a significant quadratic term not associated with an actual U shape: Simonton’s (1976) data for 
ranked eminence of the individual as a function of education. In this example, the overall pattern is U shaped only 
if impossible values of x are included. The R code to reproduce this figure is available at https://osf.io/9uwxg/.
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Fig. 3. Example of a quadratic regression that falsely indicates the absence of a U 
shape. The graph was created from a single data set with N  100,000 observations; 
x was generated by drawing at random from the U(0,1) distribution and squaring 
the result. The R code to reproduce this figure is available at https://osf.io/3psev/.

What About Diagnostic Tests?

Many textbooks recommend that researchers conduct 
diagnostic tests before interpreting regression results, but 
are those recommendations enough to protect us from 
wrong inferences about U shapes based on quadratic 
regressions? In this section, I argue that the answer is no.

First, in practice, researchers do not follow the rec-
ommendations; they do not run, or at least do not 
report, diagnostic tests on their regression results. Sec-
ond, regression diagnostics qualitatively assess the gen-
eral adequacy of the model, but we want to quantitatively 
assess the adequacy of the conclusion that the relation-
ship is U shaped. Figure 4 illustrates this problem, 
showing a case in which regression diagnostics for a 
true-positive and a false-positive U-shaped relationship 
are indistinguishable from one another.

Third, it is not clear what researchers should do 
when they diagnose their quadratic regression as mis-
specified. If not a quadratic model, what model should 
they estimate? There is no default alternative; research-
ers would need to try multiple functional forms (e.g., 
higher-order polynomials, interrupted log regressions, 
various interactions) until one subjectively seems to fit 
well enough. This leads to two problems. One is that 
when those more complicated models are estimated, 
it  is not clear how the researcher should go about  
testing for a U shape. For example, if we fit a 

fourth-order polynomial to the y  log(x) data used to 
construct Figure 2a, we obtain the following estimate: 
y  44x – 142x2  189x3 – 86x4. Should we interpret this 
equation as evidence for or against a U shape? Perhaps 
the most sensible thing to do is to compute the implied 
marginal effect of x on y for every value of x and then 
average the resulting values for two ranges of x. But 
now we have a two-lines test, except that we are aver-
aging fitted values, computed assuming an arbitrary 
functional form, instead of averaging observed values. 
In addition, the second problem is that the abundance 
of alternatives to the quadratic opens the door to over-
fitting in general and p-hacking in particular.

The Two-Lines Solution

Interrupted regression

Because hypotheses positing U shapes state merely that 
the effect of x on y changes sign for low versus high x 
values, we should test these hypotheses by merely test-
ing if the effect of x on y changes sign for low versus 
high x values. Such a test involves computing two aver-
age slopes, which in turn is done by estimating two 
regression lines, one for x  xc and the other for x  
xc, where xc is the break point separating the two 
regions. One may increase statistical efficiency by 
simultaneously estimating both lines in a single 
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Fig. 4. Example illustrating that diagnostic plots are not diagnostic about the correctness of an inference about a 
U-shaped relationship based on quadratic-regression results. The data for this example were generated by drawing 
400 observations from a U(0,1) distribution for x and adding noise from an N(0,1) distribution to the true y value. 
The true relationship for the data in the left column is not U shaped, but the true relationship for the data in the 
right column is U shaped (see the models in the top row). The second row shows the results from a quadratic 
regression for each data set. In the third row, the residuals are plotted against fitted values; in the absence of 
specification error, there should be no association between the two, but the fitted (red) lines in the graphs show 
that the residuals are higher in their middle range than at lower and higher values. The R code to reproduce this 
figure is available at https://osf.io/kuj3d/.
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regression, relying on what is often referred to as an 
interrupted regression (see, e.g., Marsh & Cormier, 
2001, p.  7). Specifically, interrupted regressions con-
form to the following general formulation:9

 y  a  bxlow  cxhigh  d * high  ZBZ, (1)

where xlow  x – xc if x  xc and 0 otherwise, xhigh  x – xc 
if x  xc and 0 otherwise, and high  1 if x  xc and  

0 otherwise.

Z is the (optional) matrix with covariates, and BZ is its 
vector of coefficients.

Setting the break point

We can set the break point seeking to maximize fit or 
to maximize statistical power. That is, we can seek to 
arrive at a model that fits the data best or at a model 
that has the highest probability of diagnosing f (x) as 
U shaped when it is, without exceeding the nominal 
false-positive rate when it is not.

Maximizing fit. Setting the break point to maximize fit 
involves answering this question: Given that we will fit 
the data with two lines, which break point leads to 
two lines that best fit the data overall? There is a litera-
ture examining how to maximize fit for segmented and 

interrupted regressions (see, e.g., Hansen, 2000; Molinari, 
Daures, & Durand, 2001; Muggeo, 2003; Stasinopoulos & 
Rigby, 1992). But when testing for U shapes we are not 
trying to fit the data as well as possible.

We are not fitting two lines with a possible discontinu-
ity between them because we believe the real relation-
ship has that shape and we want to approximate it as 
well as possible. Rather, we are only estimating regres-
sions to compute average slopes in two sets of x values. 
Thus, we want to find the break point that answers a 
different question: If the true relationship is U shaped 
(i.e., if there really is a sign change for the effect of x 
on y within the set of observed values), which break 
point maximizes the chance that we will detect it? Figure 
5 illustrates the conflict between these two goals. More-
over, later on, when evaluating the performance of dif-
ferent break points, I show that the break point that 
maximizes fit provides lower statistical power than that 
obtained with the proposed Robin Hood procedure.

Maximizing power. Without making strong assump-
tions about (a) the functional form of the relationship 
between x and y, f (x); (b) the distribution of x; and (c) 
the distribution of the error term, it does not seem pos-
sible to arrive at a theoretically optimal break point that 
maximizes statistical power for U-shape testing. The 
approach I propose here, instead, is algorithmic, designed 
to have high power, rather than demonstrably maximal 

Fig. 5. Examples illustrating that the break point that maximizes overall two-lines fit does not necessarily maximize power to detect a 
U-shaped relationship. Each graph shows the best-fitting two-lines model (obtained using Muggeo’s, 2003, procedure) and the real relation-
ship for a simulated data set. The vertical dotted lines contrast the break point for the two regression lines that maximizes overall fit and 
the break point at which the sign of the effect of x on y changes (i.e., the U-shape break point). The R code to reproduce this figure is 
available at https://osf.io/w3m2u/.
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power, for a very broad range of situations (but presum-
ably not all). I developed the algorithm keeping in mind 
three key ideas: (a) Because the two-lines test requires 
both slopes to be significant, increasing its power requires 
increasing the power of the statistically weaker of the two 
lines. A segment of an interrupted regression, in turn, has 
more power when (b) it is steeper (i.e., the effect is big-
ger) and (c) it includes more observations (i.e., the stan-
dard error is smaller). Thus, conceptually, the algorithm 
sets a break point that will increase the statistical strength 
of the weaker of the two lines, by placing more observa-
tions in that segment without overly attenuating its slope. 
I refer to it as the Robin Hood algorithm, for it takes away 
observations from the more powerful line and assigns 
them to the less powerful one.

I rely on Figure 6 to describe the Robin Hood algo-
rithm. Every panel involves the same true underlying 
relationship between x and y, depicted by the solid line 
in Figure 6a, and the same single random sample, 
depicted with the same scatterplot in every panel. From 
left to right, the top row in the figure illustrates increas-
ingly sophisticated approaches for setting the break 
point, culminating in the proposed Robin Hood algo-
rithm in the rightmost column. The bottom row shows 
the resulting two-lines regression estimates.

For illustrative purposes, consider attempting to 
obtain two steep slopes by setting xc, the break point, 
at the x value associated with the most extreme 
observed y value (first column in Fig. 6). An obvious 
problem is that individual observations, especially the 
most extreme one, can be greatly influenced by random 
error. Figure 6a, for example, shows that the x value 
associated with the most extreme observation, x  0.78, 
falls outside the range of x values with maximum true 
y values, 0.5  x  0.7.

We can cancel much of the random error by estimat-
ing a flexible model of f (x), for example, a polynomial, 
local, kernel, or spline regression, and using the mod-
el’s fitted values instead of the observed values to iden-
tify the most extreme observations. I rely on splines 
here because they easily accommodate covariates, can 
be used to construct confidence intervals for f (x), and 
do not rely on functional-form assumptions (see Section 
3.2.1 in Wood, 2006).10 In particular, Figures 6b and 6f 
depict the fitted values, ŷs, obtained from a cubic 
spline regression and showcase the consequences of 
moving the break point from the x associated with the 
most extreme observed y to the x associated with the 
most extreme fitted value, ŷmax.

In the example depicted in Figure 6, and presumably 
in many psychological phenomena, relationships are U 
rather than V shaped, having regions with a relatively 
flat maximum. It therefore seems sensible to identify 
the set of most extreme ŷs rather than the single most 
extreme ŷ . I define ŷs within 1 SE of ŷmax as that set 
and refer to it as ŷ flat. Thus, every ŷ in ŷ flat is within 1 

SE of ŷmax. The solid line in Figure 6c depicts ŷ flat, and 
Figure 6g shows the slopes of the two resulting regres-
sion lines when the break point is set as the midpoint 
of ŷ flat.

We now have a set of candidate xc values, those 
associated with ŷ flat. The goal is to choose the one 
among them that we expect to result in the highest 
statistical power to detect a U shape, and thus the one 
among them that we expect to give the highest statisti-
cal power to the weaker of the two lines within the 
interrupted regression. The algorithm achieves that goal 
by setting xc so that it allocates a disproportionate share 
of the observations in ŷ flat to the weaker line; by 
increasing the number of observations in that segment, 
it reduces its standard error, increasing its statistical 
power.

The algorithm proceeds in two steps. In the first step, 
it identifies which of the two lines is statistically weaker. 
In the second step, it sets the break point by allocating 
observations in ŷ flat to the first versus second line in 
inverse proportion to the lines’ relative statistical 
strength. Specifically, in the first step, the algorithm sets 
the x value that is the midpoint of ŷ flat as an interim 
break point. It estimates an interrupted regression and 
computes the absolute values of the test statistics for 
both lines, z1 and z2, and then sets the break point for 
the second step in inverse proportion to these zs. Spe-
cifically, the break point becomes the z2/(z1  z2)th 
percentile of the x values within ŷ flat.

If both lines are about equally strong, statistically 
speaking, with roughly identical test statistics, the break 
point will remain roughly at the midpoint of ŷ flat. If the 
z value of the first line in the first step were, say, 3 times 
that of the second line, then the break point would be 
set at the 75th percentile of xs within ŷ flat, so that the 
second (weaker) line has 75% of ŷ flat and the first line 
the remaining 25%. Again, the algorithm allocates addi-
tional observations from within the ŷ flat region to the 
weaker line so that its standard error gets smaller.

In Figure 6, setting the midpoint of ŷ flat as the break 
point leads to z1  24.28 and z2  1.71. Computing the 
ratio z2/(z1  z2), we obtain 6.58%, so the Robin Hood 
algorithm sets the breakpoint at the 6.58th percentile 
of the x values associated with ŷ flat, which in that sam-
ple corresponds to x  0.59 (Fig. 6d). Using that break 
point, we obtain the final interrupted regression to test 
for the presence of a U shape (see Fig. 6h), and in this 
case, we obtain a much stronger result for the second 
slope, p  .012 (vs. p  .088).

In sum, the Robin Hood algorithm consists of the 
following five steps:

1. Estimate a cubic spline for the relationship 
between x and y

2. Identify ŷmax, the most extreme internal fitted 
value



10 

F
ig

. 
6
. 

Il
lu

st
ra

ti
o
n
 o

f 
fo

u
r 

p
ro

ce
d
u
re

s 
to

 i
d
en

ti
fy

 t
h
e 

b
re

ak
 p

o
in

t 
(a

–d
) 

an
d
 t

h
ei

r 
co

n
se

q
u
en

ce
s 

(e
–h

).
 A

ll
 p

an
el

s 
ar

e 
b
as

ed
 o

n
 t

h
e 

sa
m

e 
ra

n
d
o
m

 s
am

p
le

 (
ea

ch
 c

ir
cl

e 
re

p
re

se
n
ts

 a
 

d
at

a 
p
o
in

t)
; 
th

e 
tr

u
e 

re
la

ti
o
n
sh

ip
 b

et
w

ee
n
 x

 a
n
d
 y

 i
s 

sh
o
w

n
 b

y 
th

e 
so

li
d
 l
in

e 
in

 (
a)

. 
T
h
e 

ef
fe

ct
 o

f 
x 

o
n
 y

 i
s 

p
o
si

ti
ve

 u
p
 t

o
 x

 
 0

.5
, 
fl
at

 u
p
 t

o
 x

 
 0

.7
, 
an

d
 n

eg
at

iv
e 

o
n
w

ar
d
. 
T
h
e 

to
p
 

ro
w

 s
h
o
w

s 
fo

u
r 

al
te

rn
at

iv
e 

w
ay

s 
to

 s
et

 t
h
e 

b
re

ak
 p

o
in

t:
 I

t 
m

ay
 b

e 
th

e 
x
 v

al
u
e 

as
so

ci
at

ed
 w

it
h
 (

a)
 t

h
e 

m
o
st

 e
xt

re
m

e 
y 

va
lu

e;
 (

b
) 

th
e 

m
o
st

 e
xt

re
m

e 
fi
tt
ed

 v
al

u
e,

 y
; 
(c

) 
th

e 
m

id
p
o
in

t 
o
f 

th
e 

fl
at

 m
ax

im
u
m

; 
o
r 

(d
) 

th
e 

so
lu

ti
o
n
 p

ro
vi

d
ed

 b
y 

th
e 

R
o
b
in

 H
o
o
d
 a

lg
o
ri

th
m

. 
T
h
e 

b
o
tt
o
m

 r
o
w

 s
h
o
w

s 
th

e 
re

su
lt
in

g 
tw

o
-l
in

es
 r

eg
re

ss
io

n
s.

 T
h
e 

fi
tt
ed

 v
al

u
es

 i
n
 (

b
) 

th
ro

u
gh

 (
d
) 

w
er

e 
o
b
ta

in
ed

 b
y 

sm
o
o
th

in
g 

th
e 

sc
at

te
rp

lo
t 

w
it
h
 a

 c
u
b
ic

 s
p
li
n
e.

 T
h
e 

fl
at

 r
eg

io
n
 i
n
 (

c)
 a

n
d
 (

d
) 

is
 w

h
er

e 
y
s

 a
re

 w
it
h
in

 1
 S

E
 o

f 
th

e 
m

ax
im

u
m

 ŷ
. 
T
h
e 

R
 c

o
d
e 

to
 r

ep
ro

d
u
ce

 t
h
is

 f
ig

u
re

 
is

 a
va

il
ab

le
 a

t 
h
tt
p
s:

//
o
sf

.i
o
/z

d
er

t/
.



Two Lines 11

3. Identify ŷ flat, the set of ŷ values within 1 SE of ŷmax

4. Estimate an interrupted regression using as the 
break point the median x value within ŷ flat (The 
regression will result in two test statistics, one for 
each line. Let their absolute values be z1 and z2.)

5. Set the break point at the z2/(z1  z2)th percentile 
of the x values associated with ŷ flat

It is important to note that because the break point 
is set algorithmically within a set of candidate break 
points, it conveys no interpretable meaning on its own. 
We should not conclude that the breakpoint is the point 
where the sign of the effect switches. The specific point 
of the sign switch, to the extent it actually exists, is not 
estimated precisely with the two-lines test.

Performance of the Two-Lines Test

False-positive and false-negative  
U shapes

Figure 7 shows results for false-positive detection of a U 
shape in simulated scenarios. The left panel shows results 
obtained with six testing procedures (including the Robin 
Hood algorithm) when the true relationship would be 
expected to lead to the most false positives: an initial 
strong effect followed by a long flat segment. The right 
panel shows results for the same testing procedures for 
scenarios in which the data followed a (monotonic) logis-
tic function. For the quadratic-regression approach, I 
report results for its most sophisticated version, the pro-
cedure proposed by Lind and Mehlum (2010), which is 
equivalent to that proposed by Spiller et al. (2013), Miller 
et al. (2013), and Aiken and West (1991).11

The results in Figure 7 are highly consistent. They 
show that the quadratic-regression approach to testing 
for U-shaped relationships had an unacceptably high 
false-positive rate—often a 100% rate—for a very broad 
range of scenarios. In contrast, the two-lines approach 
in general, and the Robin Hood procedure for setting 
the break point in particular, showed acceptable perfor-
mance. False-positive rates were typically below the 
nominal 5% level (as is typically the case when the null 
hypothesis is a composite null; see, e.g., Bowman, Jones, 
& Gijbels, 1998), and even the post hoc most extreme 
scenario raised the false-positive rate only barely above 
the 5% level (and these rates are necessarily overesti-
mates, as they were selected ex post because they were 
the highest values).

Exploring factors that influence false-positive rates 
(see Supplement 1 in the Supplemental Material), I 
found that scenarios using the distribution of x sug-
gested by McClelland (1997) had higher false-positive 
rates than other scenarios; greater levels of random 
noise were also associated with higher false-positive 

rates. I ran additional simulations that relied on that 
distribution of x and had even higher levels of noise 
than those used in Figure 7 and found that the false-
positive rate did not increase any further.

Figure 8 moves on to false negatives, comparing esti-
mates of statistical power obtained using the Robin 
Hood algorithm to set the break point with estimates of 
power obtained using four alternative approaches to 
setting the break point. Results are shown for two gen-
eral functional forms (Fig. 9 shows examples of the 
individual simulations behind the left panel of Fig. 8). 
Because quadratic regressions yielded unacceptably 
high false-positive rates, Figure 8 does not include 
power results for that approach. For statistical inference, 
we should select the most powerful test among those 
that satisfy the nominal false-positive rate. For example, 
if the test consisted of a coin that read “U shape” on 
either side, flipping the coin would lead to 100% power, 
but this is not a statistical test we would want to use.

To facilitate comparisons with the proposed Robin 
Hood procedure, Figure 8 shows the difference between 
the power of each alternative procedure and that of the 
Robin Hood procedure. The panels of Figure 8 paint a 
highly consistent picture. The Robin Hood algorithm gen-
erally outperformed all other alternatives. Two counter-
intuitive general patterns are worth highlighting. First, 
estimating three rather than two lines led to dramatic 
losses of statistical power; this occurred because the 
observations allocated to the middle line did not contrib-
ute to the precision of the slope estimates involved in 
the test. Second, the least powerful approach to setting 
the break point for a two-lines estimation was an 
approach previously proposed by several authors, includ-
ing me: setting the break point as the quadratic regres-
sion’s most extreme fitted value (Haans, Pieters, & He, 
2016; Iribarren et al., 1996; Simonsohn & Nelson, 2014).

Demonstrations

In this section, I take two examples of purportedly 
U-shaped relationships in the published literature and 
demonstrate that using the two-lines test instead of a 
quadratic regression would lead to different conclu-
sions. The top row in Figure 10 revisits the analyses 
by Sterling, Jost, and Pennycook (2016), who wrote (in 
their discussion of secondary analyses), that people 
“who were moderate in terms of their support for the 
free market appeared to be more susceptible to bullshit 
than extremists in either direction” (p. 356). They 
arrived at this conclusion that an inverted-U-shaped 
relationship was present because the quadratic term 
in their regression was significant (p  .026). I success-
fully reproduced their results analyzing their posted 
data (Fig. 10a). The two-lines test, however, showed 
that the slope of the second line, although negative, 
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was far from significant, p  .45 (Fig. 10b). Keep in 
mind that if x and y were uncorrelated for high values 
of x (i.e., if the true second slope were flat), 50% of 
the estimated slopes would be negative (and 45% of 
them would be at least as steep as observed—that is 
the meaning of the p  .45 reported in the figure). The 
data are inconclusive: They are consistent with a 
U-shaped relationship, consistent with lack of a cor-
relation among people who endorse free-market 

ideology at a relatively high level, and consistent with 
a monotonic effect. Again, prediction of a U-shaped 
relationship was secondary to the authors. Their core 
prediction of an association between free-market ideol-
ogy and bullshit receptivity is consistent with the first 
line in the two-lines test).

Swaab, Schaerer, Anicich, Ronay, and Galinsky (2014), 
in their Study 2, examined the relationship between the 
number of elite players on a country’s soccer team and 

Fig. 9. A representative subset of 80 of the 2,520 scenarios used to compare power across procedures in the left panel of Figure 8. The solid 
lines represent the underlying true functions, and each gray dot represents a single random draw from the specified distributions of x values 
and noise. Max( ŷ )  the highest fitted value of y. The R code to reproduce this figure is available at https://osf.io/m7avc/.
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its rating by the Fédération Internationale de Football 
Association (FIFA). Their results, they wrote, “revealed a 
significant quadratic effect of top talent: Top talent ben-
efited performance only up to a point, after which the 
marginal benefit of talent decreased and turned negative” 
(p. 1584; italics added). I successfully replicated those 
results with independently obtained data, but in the two-
lines test, the slope of the second line was also positive 
(albeit far from significant; see Fig. 10b). These data do 
not support the conclusion that there is such a thing as 
“too much talent” in international soccer teams.

Limitations

In this section, I discuss three limitations of the two-
lines test and the proposed Robin Hood algorithm.

Limitation 1: asymptotic properties

I have proposed an algorithm and evaluated its perfor-
mance via simulation in small samples, without deriving 
its theoretical asymptotic properties. Moreover, the two-
lines test uses this algorithm without known theoretical 
properties to set the break point.

Limitation 2: X, N, and W shapes

The two-lines test is expected to perform well as long as 
the true relationship of interest has at most two regions 
where the impact of x on y has opposite signs; that is, 
the relationship is (a) flat overall (no effect), (b) mono-
tonic or weakly monotonic, or (c) U shaped. It will not 
perform well, at least in terms of interpretability, if the 
true relationship has more than one change in sign, for 
instance, if it is N shaped, X shaped, or W shaped, rather 
than U shaped. Such relationships, it is worth noting, 

invalidate the interpretability of quadratic regressions as 
well. The nonparametric smooth line that accompanies 
the output generated by the app that runs the two-lines 
test (available at http://webstimate.org/twolines/) may 
be used as a partial solution to this limitation, as it alerts 
users if the relationship looks N, X, or W shaped.

Limitation 3: imprecise false-positive rate

The precise false-positive rate of the two-lines test is not 
known, and it cannot be guaranteed to be 5% for any 
specific data set, for two reasons. The first reason is that 
the null hypothesis of the absence of a U shape is what 
is known as a composite null. The second reason is that 
the Robin Hood algorithm slightly overfits the data. For 
a detailed discussion of these issues, see Supplement 8 
in the Supplemental Material. Nevertheless, the false-
positive rate of the two-lines test is expected to be gen-
erally lower than the nominal rate, and almost never 
higher than 6% for a nominal  of 5% (see Fig. 7 and 
also Supplement 1 in the Supplemental Material).

Conclusions

The use of quadratic regressions to test for U-shaped 
relationships is as invalid as it is common. To interpret 
the results of a quadratic regression, we need to know 
that the true functional form is indeed quadratic—
something that is virtually impossible to know in social 
science. The two-lines test is arguably the most straight-
forward test of the hypothesis that the average effect 
of x on y is of opposite sign for high versus low values 
of x. It makes no assumptions about the functional form 
of f (x). The Robin Hood procedure to set the break 
point for the two lines achieves notably higher power 
than any alternative with which I have compared it.

Table A1. Index of the Supplemental Material

Section Pages

Supplement 1. Identifying factors that increase the false-positive rate for Robin Hood 2–5
Supplement 2. Histograms for difference in power for each approach in Figure 8 in the article 6
Supplement 3. Two-lines test with discrete x values 7–8
Supplement 4. Equivalence of Lind & Mehlum (2010) with formulas in psychology textbooks, when applied to quadratic 

regressions
9–11

Supplement 5. Estimating an interrupted regression does not require nor involve assuming y=f(x) is two straight lines 
with a discontinuity

12

Supplement 6. Two lines vs. monotonicity, and there is nothing wrong with quadratic terms as covariates 13
Supplement 7. Accompanying quadratic regression with robustness tests is insufficient 14–15
Supplement 8. Why the false-positive rate of the two-lines test is not exactly known for any given data generating 

process
16–17
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Notes

1. Haans et  al. (2016) provided a thorough and thoughtful 
review of the empirical literature on testing for U-shaped rela-
tionships in management, and yet they quite explicitly treated 
U-shaped and quadratic relationships as synonymous (see their 
abstract and footnote 1). The methodological article by Miller 
et al. (2013) on testing interactions for curvilinear relationships 
distinguished between merely curvilinear and U-shaped rela-
tionships, but for both Miller et al. assumed a quadratic func-
tion. Lind and Mehlum (2010)’s article on U-shape testing did 
distinguish between U-shaped and quadratic functions, but all 
their demonstrations involved estimating quadratic regressions.
2. The function f (x)  log(x) – 2x is U shaped because its slope, 
f (x)  1/x – 2, is positive for x  0.5 and negative for x  0.5.
3. One could refine the definition to preclude more than 
one sign change (e.g., not classify a W shape as a U shape) 
and could implement the testing by recursively applying the 
U-shape test to the two segments behind the U-shaped pattern. 
But such refinement adds complexity and does not seem useful 
for the vast majority of cases in which a U-shaped relationship 
is hypothesized; more than one sign change seems like a rather 
unusual prediction in the social sciences.
4. In particular, a regression estimate is the weighted aver-
age of the slope of every pair of data points, with each 
pair weighted by the square of the distance between the 
predictor values. For instance, in the simple case with one 
predictor, the weighted average is calculated as follows: 

b̂  = 
y y

x x
x x x xi j

i j
i j i ji ji j

−
−

− −∑∑ ( ) / ( )
,,

2 2  (see, e.g., Gelman 

& Park, 2008).
5. You can verify this by running the following code in R:
x=1:3
y=x^4
lm(y~x)

6. In a later section, Cohen et al. did warn against blindly relying 
on quadratic terms, writing that “it is always important to exam-
ine the actual data against both the polynomial regression and 
some nonparametric curve such as lowess [i.e., locally weighted 
scatterplot smoothing]” (p. 207). Moreover, I do not believe that 
the authors would have fallen prey to such fallacious conclu-
sions, but many readers of the textbook probably have.
7. If f (x)  ax  bx2, then f (x)  a  2bx. Solving for f (xc)  0 
leads to xc  –a/2b.
8. Lind and Mehlum (2010) accompanied their (economics) 
article with a STATA module, utest, that runs their proposed 
U-shape test. The program is executed after running a regres-
sion. When run after a quadratic regression, as in all the exam-
ples in Lind and Mehlum’s article, their test is equivalent to 
the analysis advocated for in psychology textbooks (e.g., Aiken 
& West, 1991, p. 77; see Supplement 4 in the Supplemental 
Material for a numerical demonstration of the equivalence). But 
Lind and Mehlum appear to have developed their test indepen-
dently. The procedures by Spiller et al. (2013) and Miller et al. 
(2013) are, as these authors made clear, also directly derivable 
from the formulas in Aiken and West (1991, p. 77).
9. If d is forced to be 0, so that a discontinuity at xc is not 
allowed, the regression is called segmented instead of inter-
rupted (see, e.g., Muggeo, 2003). Forcing d  0 introduces bias 
onto both b̂  and ĉ. For purposes of U-shape testing, one must 
rely on interrupted rather than segmented regressions, which 
means including high as a predictor in Equation 1.
10. In particular, using the R library mgcv, the command 
gam(y~s(x,bs=“cr”)) estimates a cubic spline predicting the 
dependent variable y with the predictor x. The option bs=“cr” 
specifies that a cubic spline be used instead of the default, which 
is a “plate regression spline” (Wood, 2006, p. 219).
11. Lind and Mehlum considered other functional forms in the 
theory section of their article, but all their examples involved 
quadratic regressions.
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