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Abstract: 
Many psychological theories predict u-shaped relationships: x is good in low quantities, 
but bad in high quantities, or vice-versa. These predictions are tested primarily via 
quadratic regressions; here I show such approach is essentially never valid. I introduce a 
new test: estimating a regression with two separate lines, one for ‘low’ and one for ‘high’ 
values of x. A u-shape is present if the two slopes have opposite sign and are individually 
significant. A procedure to set the breakpoint for ‘low’ vs ‘high’ is proposed, the Robin 
Hood algorithm, and shown to be superior to all alternatives considered, including 
maximizing fit. The problems with the quadratic and advantages of the two-lines are 
demonstrated via simulations and examples from published psychological research. 
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Is there such thing as too many options, virtues, or examples in an opening 

sentence? Researchers are often interested in these types of questions, in assessing if the 

effect of x on y is positive for low-values of x, but negative for high values of x.  For ease 

of exposition, I refer to all such relationships as ‘u-shaped,’ whether they are symmetric 

or not (i.e., U or J shaped), and whether the effect of x on y goes from negative to 

positive or vice versa (i.e., U or inverted-U). 

U-shaped hypotheses are abundant in psychology. Just in 2016, for instance, 

papers published online in JEP:G examined possibly u-shaped relationships between 

strength of stimuli and priming effects (Payne, Brown-Iannuzzi, & Loersch, 2016) and 

between proficiency and cognitive performance (von Bastian, Souza, & Gade, 2016), in 

Psychological Science between trial-number and performance (Choi & Kirkorian, 2016), 

and between precision of opening bids and counter-offers (Loschelder, Friese, Schaerer, 

& Galinsky, 2016); in JPSP between age and materialism (Jaspers & Pieters, 2016) and 

between age and risk-taking  (Josef et al., 2016); and in the Journal of Applied 

Psychology between team tenure and psychological safety (Koopmann, Lanaj, Wang, 

Zhou, & Shi, 2016), and between personality similarity and emotional display (Wilson, 

DeRue, Matta, Howe, & Conlon, 2016).   

Psychologists, and other social scientists, have relied primarily on quadratic 

regressions, y = ax+bx2, to test if the effect of x on y is u-shaped. In this article I show 

quadratic regression are a statistically invalid test of u-shapedness. Under realistic 

circumstances they can obtain extremely high false-positive rates; for instance, 

erroneously concluding with near certainty that y=log(x) is u-shaped. 
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 I provide concrete demonstrations of the problem by re-analyzing data from a 

few published psychology papers that appear to arrive at false-positive u-shaped 

relationships, interpreting what appear to be monotonic effects as u-shaped because they 

relied on quadratic regressions.  

I propose an alternative test for u-shapedness: fitting two regression lines to the 

data, one for ‘low’ values of x, and another for ‘high’ values of x, and concluding that a 

u-shape is present if the slopes are of opposite sign and are both statistically significant.  

This two-lines approach follows, as statistical tests should, directly from the research 

question of interest. When testing for u-shapes we are asking this question: Is the average 

effect of x on y of one sign up to a given value of x, and of the opposite sign, on average, 

from that point onwards? 

 Linear regressions estimate the (weighted) average effect of x on y within a given 

range of x values; thus, to estimate two average effects of x on y for two different ranges 

of x values, estimating two regression lines is arguably the single most straightforward 

solution. 1  The two-lines approach requires determining the breakpoint, where one line 

ends and the other begins, or equivalently, the point at which x values are deemed ‘low’ 

vs. ‘high.’ (Once the breakpoint is set, both lines can be estimated within a single 

‘interrupted’ regression for greater statistical efficiency). For hypothesis testing purposes, 

a natural objective is to set the breakpoint in a way that maximizes statistical power while 

preserving the nominal false-positive rate, e.g., α=5%. In other words, maximizing the 

probability of obtaining two regression lines of opposite sign, each p<.05, if the 

                                                 
1 In particular, regression estimates are the weighted average of the slope of every pair of data points, 
weighting each pair by the square of the distance between predictor values. For instance, in the binary case: 

�� =∑
�����

�����
(�� − ��)�

�,� / ∑ (�� − ��)�
�,� . See e.g., Gelman and Park (2008) 
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relationship truly is u-shaped, without exceeding 5% if it is not. I propose a novel 

procedure, the ‘Robin Hood algorithm,’ to set that breakpoint. It outperforms all 

alternatives considered, including, among others, setting the breakpoint that maximizes 

overall fit, and where a quadratic regression diagnoses that the effect changes sign. 

It is important to make clear this article is not about nonlinear relationship in 

general, nor about polynomial regressions in general. It is about testing u-shaped 

relationships in particular.  There is nothing wrong or invalid about including quadratic 

terms as covariates in regressions to allow for non-linear effects (e.g., controlling for age 

and age2). There is something wrong, however, with interpreting the quadratic term as 

diagnostic of u-shapedness, as an answer to the question “does age at first increase y but 

then decrease it?” (Because it generally does not provide a valid answer to that question). 

It is also worth distinguishing the testing of u-shapedness with the testing of 

monotonicity. A few tests have been proposed to test if the effect of x on y is monotonic 

(see e.g., Bowman, Jones, & Gijbels, 1998; Hall & Heckman, 2000). Monotonicity tests 

are not well suited to test for u-shapedness because, while all u-shaped effects are non-

monotonic, not all non-monotonic effects are u-shaped.   

To make this distinction concrete, consider two alternative hypotheses about the 

relationship between age and happiness. One hypothesis, H1, posits that age has a u-

shaped relationship with happiness, such that people are happier the older they are up to a 

point, say 70 years old, and then happiness slowly starts decreasing with age. Another 

hypothesis, H2, posits that happiness increases with age up to death, but that around age 

45 there is a short-lived mid-life crisis that leads to a short-lived drop in happiness. H1 

and H2 involve a non-monotonic relationship, but H2 is not a u-shaped relationship.  
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Quadratic regressions don’t test u-shapedness 

The sophistication with which results from quadratic regressions are interpreted, 

for u-shape testing, can be classified into three levels; they differ in how many additional 

calculations are conducted upon estimation.  

 
Level 1: is the quadratic term significant? 

The most basic approach involves checking if the estimates of a and b, in 

y=ax+bx2, imply a u-shaped function and �� is statistically significant. This approach is 

advocated in some prominent textbooks. For example, Cohen, Cohen, West, and Aiken 

(2003) write, “The [quadratic] coefficient is negative [and significant]. . ., reflect[ing] the 

hypothesizes initial rise followed by decline” (p.198; emphasis added). The significant 

coefficient need not, in fact, imply a u-shape relationship.2  

A JPSP paper by Simonton (1976), with about 150 citations, illustrates. He 

established correlates of the eminence of ‘geniuses’.  One key inference was that “ranked 

eminence [is a] curvilinear inverted-U function of education” (abstract, p. 218).  The 

point estimates of interest, within a larger specification, were y=4.872 x  - 11.96 x2 where 

is the measure of eminence, and x of education (p. 223).  

                                                 
2 In a later section Cohen et al do warn against blindly relying on the quadratic terms writing “it is always 
important to examine the actual data against both the polynomial regression and some nonparametric curve 
such as lowess.” This advice is wise but seldom followed, probably because it is insufficiently actionable as 
comparisons of raw data with fitted lines is too qualitative. The two-lines test provides a practical solution 
when the question of interest is whether a relationship is u-shaped. 
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Fig. 1. A significant quadratic term of opposite sign doesn’t imply u-shape.  
R Code to reproduce figure: https://osf.io/kqjbn/       

 
 

Figure 1 shows that, within the range of possible values the regression results do 

not imply a u-shape. For every possible value of x, higher x is associated with lower y.  

Only for negative (impossible) values of x is the sign positive and hence the overall 

pattern u-shaped.   

 
Level 2: is the sign-flip within the range of values? 

The discussion of Figure 1 above is an example of this additional step and some 

published papers carry it out as well. For example, Berman, Down, and Hill (2002) write 

“the value [at which the sign flips] is actually above any value observed in the data, 

suggesting that, although negative returns are a theoretical possibility, they are not 

encountered.” (p. 23).  
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We need to take into account sampling error. The true relationship is, we assume, 

y=ax+bx2, but we don’t observe a and b, we observe estimates, �� and ��, and as estimates 

they contain error, and so does, therefore, our estimate of the point at which the effect of 

x on y flips sign. We may thus obtain an estimated u-shape within the observed x-values 

because of sampling error.   

 
Level 3: is the sign-flip “statistically-significantly” within the range of values? 

The state-of-the-art procedure to test for u-shapes has been advocated in various 

methodological papers (Lind & Mehlum, 2010; Miller, Stromeyer, & Schwieterman, 

2013; Preacher, Curran, & Bauer, 2006; Spiller, Fitzsimons, Lynch Jr, & McClelland, 

2013). It builds on a technique dating back to Johnson and Neyman (1936).   

This Johnson-Neyman technique, when applied to u-shape testing, estimates a 

quadratic regression and then builds a confidence interval for the estimated effects of x 

on y for different values of x. This approach more generally, beyond u-shape testing, is 

sometimes referred to as ‘pick-a-point’ or ‘spotlight analysis’ when focusing on few 

values of x, say ±1SD from the mean, and ‘floodlight analysis’ when applied to all values 

of x (Preacher et al., 2006; Spiller et al., 2013).  With this floodlight analysis one 

concludes the effect of x on y is u-shaped if there are observed values of x where the 

estimated effect of x on y is significantly positive, and also observed values of x where it 

is significantly negative.  

The problem is that the regression results hinge, as do the confidence interval 

calculations, on the assumption that the true relationship between x and y is quadratic and 

the results are not at all robust to deviations from such assumption, made purely for 
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mathematical convenience. Figure 2 provides realistic examples where the assumption is 

not met and the conclusions are erroneous.   

 
Fig. 2.  Examples of quadratic regressions misdiagnosing u-shapes.  
Panels A & B are obtained from a single simulated dataset with N=100000 where x is obtaining by squaring random 
draws from the U(0,1) distribution. Large samples without noise were used to convey the point that quadratic 
regressions get it wrong even asymptotically. Panel C uses data come from the Center for Diease Control.   
R Code to reproduce figure https://osf.io/ywe79   
 
 
 

For instance, panel A shows a scenario where the true relationship is y=log(x)  

and where a quadratic regression would result in �� =13.96x-10.45x2. In this equation, the 

effect of x on y is, dy/dx=13.96- 2*10.45x. When x=.25, the effect of x is positive, 8.735, 

but when x=.75, in contrast, negative, -1.71.  Now, of course that result is wrong, the 

effect of x is never negative when y=log(x), but it is estimated as negative because we are 

incorrectly assuming the relationship is quadratic. Specification error is behind the 

erroneous conclusion. Panels B & C provide additional examples. 

Assuming a quadratic relationship may also lead to false-negatives, failing to 

diagnose a u-shape relationship that is present, even with an infinite sample size. This 

will occur when the true relationship is u-shaped but deviates sufficiently from the 

quadratic.  See Figure 3. 

The intuition for the poor performance of the quadratic regression in 

Figures 2 & 3 is that it minimizes the sum of squared errors, (�� –y)2, without taking into 
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account overall-shape. If obtaining a better fit requires outputting a quadratic function 

that generates a non-existent u-shape, or missing a real u-shape, there is no ‘penalty.’   

 

Fig. 3.  Example of quadratic regression false-negatively concluding u-shape is absent.  
A single dataset with N=100000 observations was created, x was generated by drawing at random from U(0,1) 
distribution and squaring the result. R Code to reproduce figure https://osf.io/ywe79  
 
 

 
What about diagnostic tests? 
 

Textbooks indicate researchers should conduct diagnostic tests before interpreting 

their regression results, are those enough to protect us from wrong inferences about u-

shapes based on quadratic regressions? I argue below the answer is no. 

First, in practice, researchers do not run or at least report diagnostics on their 

regressions.  There currently are 1021 Journal of Experimental Psychology: General 

papers containing the word “regression”, only 2 the words “qq plot” or “q-q plot”, 
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perhaps the most well-known diagnostic plot.3 None of the 8 u-shape papers published in 

2016 listed in the opening paragraphs reported diagnostic tests or plots. 

Second, regression diagnostics qualitatively assess the general adequacy of the 

model, but we want to quantitatively assess the adequacy of the conclusion about u-

shapedness. Figure 4 illustrates the difference. It depicts two true relationships that are 

not exactly quadratic. One is u-shaped, the other not. Applying the quadratic to either 

dataset we conclude the relationship is u-shaped, wrongly in the left column, and 

correctly in the right one. Not only are the observed quadratic regression results 

indistinguishable, so are the diagnostic plots. Diagnostic plots are thus not diagnostic; 

they look the same when the u-shape conclusion is false- vs true-positive.  

Third, even if we assumed that researchers were to start reporting diagnostics and 

assumed that diagnostic tests were diagnostic, it is not clear what researchers should do 

when they diagnose their quadratic regression as misspecified. If not a quadratic model, 

then what model should they estimate? There is no default alternative, researchers would 

need to try multiple functional forms until one seems to -subjectively- fit well enough.  

Say running higher order polynomials, interrupted log regressions, various 

interactions, etc. This leads to two problems. First, when those more complicated models 

are estimated, how would the researcher go about testing for u-shapedness? Second, the 

modelling ambiguity opens the door to over-fitting in general and p-hacking in particular. 

  

                                                 
3 The qq-plot is a graph that has the quantiles of a normal distribution in the x-axis and of the residuals in 
the y-axis. The fact that I felt it was useful to include this footnote reflects my beliefs about how common is 
the use of these tools. 
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Fig. 4. Diagnostic plots are not diagnostic about u-shapedness 
Notes: The data were generated by drawing 400 observations from U(0,1) for x and adding noise N(0,1) to the true y-value (see top-row 
for true model). Each column has the same dataset for the three charts, but they differ across columns. 
R Code to reproduce figure: https://osf.io/cb7he  
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The two-line solution 

Let’s define an observed relationship between x and y, y=f(x), as u-shaped, if 

there exist an x value within the observed data, xc, such that the average effect of x on y 

is of opposite sign for x≤xc vs x≥xc. To test for the presence of a u-shaped relationship, 

therefore, we need to compute two average effects of x on y, one for x≤xc and one for 

x≥xc. Considering that linear regressions provide unbiased estimators of the weighted 

average effect in the given range of x values, whether the underlying relationship is linear 

or not (see footnote 2), a natural approach to test for a u-shaped relationship consists of 

estimating a regression for x values below a breakpoint, x≤xc, and another for values 

above it, x≥xc, obtaining the two desired average effect estimates. One may increase 

statistical efficiency by simultaneously estimating both lines in a single regression, 

relying on what is often referred to as an interrupted regression (see e.g., Marsh & 

Cormier, 2001, p. 7). Specifically, interrupted regressions conform to the following 

general formulation: 4  

y = a + b xlow + c xhigh + d high + Z Bz                                  (1) 

Where: 

xlow=x-xc if x≤xc, and 0 otherwise   

xhigh=x-xc if x≥xc, and 0 otherwise   

high=1 if x≥xc 0, otherwise. 

Z is the (optional) matrix with covariates, and Bz its vector of coefficients. 

 

                                                 
4 If d is forced to be 0, thus not allowing a discontinuity at xc, the regression is called segmented instead of 

interrupted (see e.g., Muggeo, 2003). As shown below, forcing d to zero can introduce bias onto both �� and 
�̂, therefore, for u-shape testing purposes, one must rely on interrupted rather than segmented regressions. 
One must include high as a predictor. 
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Discrete x values 

Equation 1 involves weak inequalities, such that the breakpoint, xc, is in both the 

high and low segment. For continuous x this is not a problem since there is zero mass an 

any given value, but for discrete x it is a problem, as one cannot estimate a regression 

where one observation belongs to two segments (and most observed data is, in practice, 

discrete, due to rounding). One solution is to arbitrarily assign xc to one of the segments. 

A much better solution is to run two separate interrupted regressions, one were we 

include xc in the low segment and one in the high segment.  

It helps to consider the most extreme case, where x can only take three values (if 

it can take only two values, there is no room for estimating non-linear effects).  So say 

x={1,2,3}.  We would test if a u-shape is present by assessing if the slope between x=1 

and x=2 is of opposite sign as between x=2 and x=3. So xc=2 would be included in both 

lines. To allow xc to belong to both segment we create six instead of just three variables: 

First, including xc in the low segment, 

1) xlow,1=x-xc if x≤xc and 0 otherwise (inequality) 

2) xhigh,1=x-xc if x>xc and 0 otherwise (strict inequality) 

3) high1=1 if x>xc 0 otherwise  (strict inequality) 

Then including xc in the high segment 

4) xlow,2=x-xc if x<xc and 0 otherwise (strict inequality) 

5) xhigh,2=x-xc if x≥xc and 0 otherwise (inequality)  

6) high2=1 if x≥xc 0 otherwise  (inequality) 
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With these six new variables one then estimates two separate interrupted regression 

The first is of the form y= a1 + b1 xlow,1 + c1 xhigh,1 + d1 high1 + covariates.  

The second of the form y= a2 + b2 xlow,2 + c2 xhigh,2 + d2 high2 + covariates.  

And we proceed to test for a u-shaped relationship by verifying that ���and  �̂� 

have opposite sign and are both individually significant.  

 

Setting the breakpoint 

In situations where theory is rich enough to make predictions about where the 

effect should switch sign, it would be sensible to set xc, the breakpoint, there (see e.g., 

Seidman, 2012; Ungemach, Stewart, & Reimers, 2011). This will be a rare occurrence in 

psychological research where theories tend to be insufficiently quantitative to make point 

predictions (none of the examples from the opening page, for instance, generate point 

predictions for the sign switch). Absent a theoretical a-priori breakpoint, it must be set 

based on the observed data. This, in turn, can be done seeking to maximize fit, or, 

seeking to maximize statistical power. That is, seeking to arrive at a model that fits the 

data best, or at one that has the highest probability of diagnosing that f(x) as u-shaped if 

indeed it is.  

Maximizing fit. Setting the breakpoint to maximize fit involves answering this 

question: “Given that we will fit the data with two lines, which breakpoint leads to two 

lines that best fit the data overall?” In this case, however, we want to answer a different 

question: “If the true relationship where u-shaped, which breakpoint maximizes the 

chances we will detect such shape?” The distinction between these two questions is the 

distinction between fit and statistical power.  Figure 5 provides two illustrative examples.  
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Panel A depicts a relationship that is formed by three straight lines.  The first change in 

slope affects more observations and involves a bigger change, thus, a procedure that 

seeks to minimize squared errors will set the breakpoint there, but to detect the u-shape 

we need a breakpoint around x=.8.  Panel B depicts a similar scenario with a less stylized 

function. To maximize power for the u-shape test we do not need to maximize fit. 5 

 

 

Fig 5. The breakpoint that maximize overall fit does not necessarily maximize power to 
detect a u-shaped relationship. 
Note: the figure depicts the breakpoint for two regression lines that maximizes overall fit, using Muggeo (2003)’s 
procedure, and contrasts it with the breakpoint actually associated with the x-value at which the sign of the effect of x 
on y changes. R Code to reproduce figure https://osf.io/p2myj   

 
Maximizing power.  Without making strong assumptions about (a) the functional 

form of the relationship between x and y, f(x), (b) the distribution of x, and (c) the 

distribution of the error term, it does not seem possible to arrive at a theoretically optimal 

                                                 
5 A tempting solution to the specific examples chosen in the figure is to allow two breakpoints, and thus 
three segments. There are two problems with this solution. First, three lines can also be misspecified, of 
course, and thus four, or more lines be needed to recover the u-shape when setting breakpoints based on fit. 
Second, even absent residual specification error, e.g., when the true functional form does indeed consists of 
three linear segments, the three-line estimation has almost always lower power to detect the u-shaped 
relationship than the two-line one. See Figure 9. 
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breakpoint that maximizes statistical power for u-shape testing. The approach I propose 

here, instead, is algorithmic, designed to have high power, rather than demonstrably 

maximal power, for a very broad range of situations. I developed the algorithm keeping 

in mind three key ideas: (i) because the two-lines test requires both slopes to be 

significant, to increase its power requires increasing the power of the statistically weaker 

of the two lines. Segments of an interrupted regression, in turn, have more power when 

(ii) they are steeper (bigger effect), and (iii) they include more observations within their 

segment (smaller standard error). Thus, conceptually, the algorithm seeks to set a 

breakpoint that will increase the statistical strength of the weaker of the two lines, by 

placing more observations in that segment, without overly attenuating its slope. I refer to 

it as the Robin Hood algorithm, for it takes away observations from the more powerful 

line and assigns them to the less powerful one. 

I rely on Figure 6 to describe the Robin Hood algorithm.  Every panel involves 

the same true underlying relationship between x and y, depicted by the solid line in Panel 

A, and the same single random sample, depicted with the same scatterplot in every panel. 

The top row illustrates increasingly more sophisticated approaches for setting the 

breakpoint, culminating in the proposed Robin Hood algorithm in the right-most column. 

The bottom row the resulting two-line regression estimates.  

For illustrative purposes, consider attempting to obtain two steep slopes by setting 

xc, the breakpoint, at the x value associated with the most extreme observed y value (first 

column in Figure 6). An obvious problem is that individual observations, especially the 

most extreme one, can be greatly influenced by random error. Panel A, for example 
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shows that the x value associated with the most extreme observation, x=.78, falls outside 

the range with maximum true y values, .5<x<.7.   

We can cancel much of the aforementioned random error by estimating a flexible 

model of f(x), e.g., a polynomial, local, kernel, or spline, regression, and use the model’s 

fitted values instead of the observed values to identify the most extreme observations. 

I rely on splines here, because they easily accommodate covariates, can be used to 

construct confidence intervals for f(x), and do not rely on functional form assumptions 

(see section 3.2.1 in Wood, 2006).6 In particular, Panel B depicts the fitted values, ��s, 

obtained from a cubic spline regression, and showcases the consequences of moving the 

breakpoint from the x associated with the most extreme observed y, to the x associated 

with the most extreme fitted value: ��max.  

In the example from Figure 6, and presumably in many psychological 

phenomena, relationships are U rather than V shaped, having regions with a relatively flat 

maximum. It seems therefore sensible to identify the set of most extreme ��s rather than 

the single most extreme ��max. Here I define ��s within one standard error of  ��max as that 

set, and refer to it as ��flat. Thus, every �� in ��flat is within one standard error of ��max. The 

solid line in Figure 6C depicts ��flat.   

We now have a set of candidate xc values, those associated with ��flat. The goal is 

to choose the one among them that we expect to give higher statistical power to detect a 

u-shape, and thus the one among them that we expect to give higher statistical power to 

the weaker of the two lines within the interrupted regression. The algorithm pursuits that 

                                                 
6 In particular, using the R library mgcv, the command gam(y~s(x,bs="cr")) estimates a cubic spline 
predicting the dependent variable y with the predictor x. The option bs="cr" specifies a cubic spline be 
used, instead of the default which is a “plate regression spline” (Wood, 2006, p. 219). The entire R Code 
used to generate Figure 6 is available here: https://osf.io/3fst7.  
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goal by setting xc so that it allocates a disproportionate share of the observations in ��flat  

to the weaker line; by increasing the number of observations in that segment, it reduces 

its standard error, increasing its statistical power.  

Fig 6. Different procedures to identify the breakpoint, and their consequences. 
Notes: All panels are based on the same random sample (gray scatterplots) based on the true relationship between x and y, solid 
line in Panel A. The effect of x on y is positive up to x=.5, flat up to x=.7, and negative onwards. Top row shows 4 alternative 
ways to set the breakpoint, bottom row the resulting two-line regressions. Fitted values in panels B-D obtained by smoothing the 
scatterplot with a cubic spline. Flat region in C&D is where ��s are within 1 standard error of the max(��). R Code to reproduce 
figure: https://osf.io/3fst7  

 

The algorithm proceeds in two steps. In the first step it identifies which of the two 

lines is statistically weaker. In the second step it sets the breakpoint by allocating 

observations in ��flat to the first vs second line in inverse proportion to their relative 

statistical strength. Specifically, in the first step the algorithm sets the x-value that is the 

midpoint of ��flat as an interim breakpoint. It estimates an interrupted regression and 

computes the (absolute value of the) test-statistics for both lines, t1 and t2, and then sets 

the breakpoint for the second step in inverse proportion to these ts. That is, the breakpoint 

becomes the t2/(t1+t2) percentile of the x-values within ��flat.  
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To build an intuition: if both lines are about equally strong, statistically speaking, 

with roughly identical test statistics, the breakpoint will remain roughly at the midpoint of 

��flat. If the t-value of the first line in the first step were, say, 3 times that of the second 

line, then the breakpoint would be set at the 75th percentile of xs within ��flat, so that the 

second (weaker) line has 75% of  ��flat and the first line the remaining 25%.  The intuition, 

again, is that the algorithm allocates additional observations from within the ��flat region 

to the weaker line so that its standard error gets smaller. 

Returning to Figure 6. Panel G shows that first step, where the midpoint of ��flat is 

the breakpoint. It leads to t1= 25.07 and t2=1.86. Computing the ratio we obtain 

t2/(t1+t2)=6.9% so the breakpoint is set at the 6.9th percentile of the x values associated 

with ��flat, which in that sample corresponds to x=.59. Using that breakpoint we obtain the 

final interrupted regression used to test the presence of a u-shape, and in this case we 

obtain a much stronger result for the second slope, p2=.006.   

In sum, the Robin Hood algorithm consists of the following 5 steps. 

1) Estimate a cubic spline for the relationship between x and y  

2) Identify y�max, the most extreme internal fitted value. 

3) Identify ��flat, the set of y� values within a standard error of y�max  

4) Estimate an interrupted regression using as the breakpoint the median x value within ��flat. The 

regression will result in two test statistics, one for each line. Let their absolute values be t1 and t2 

5) Set as the breakpoint at t2/(t1+t2) percentile of the x values associated with ��flat.   

R Code needed to run the two-lines test is available from https://osf.io/psfwz/. I 

have also created an online app to run the test without requiring any programming. 

http://webstimate.org/twolines (note to review team: this is an alpha stage, I’ll continue developing as you review this paper).  
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Why not just the spline? 

The proposed algorithm relies on a cubic spline, see step 1, why do we even need 

the other steps? Why estimate an obviously inferior model, two straight lines, if we 

already have a much better approximation of the true model? The answer goes back to 

the distinction between fitting data and testing hypotheses.  A spline provides a better 

summary of the overall pattern, but does not lend itself to asking a stylized fact question 

about the relationship of interest: is it u-shaped? We need to assess if the apparent shape 

a spline suggests, is or is not consistent with the null hypothesis (no u-shape). Splines do 

not lend themselves to Gestaltic tests of this nature. Moreover, the visual results a spline 

provides hinge on the arbitrary choice of smoothness, penalty term, number of knots, etc. 

For the same data, some arbitrary choices will lead to apparent u-shapes, others will not.   

Perhaps the best way to see why splines do not answer the question of interest is 

by drawing an analogy to why we compute averages and run t-tests. We are able to see 

and plot the raw data, why run our statistical test on an impoverished representation, the 

mere average?  

The reason is that we are not interested if one individual observations happens to 

be higher or lower than another, but rather, on whether, in general, observations in one 

condition are larger than in the other, and we operationalize in general by computing the 

average and asking if the average is larger. Here we want to know if  in general the slope 

is positive at first and in general negative later on. We operationalize in general with the 

average here as well, the average slope.  
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The linearity and discontinuity assumptions are benign 

The two-line test involves estimating an interrupted regression: two linear 

segments with a discontinuity in between. True causal models in psychology, the true 

underlying f(x), however, will almost never be properly captured by the combination of 

two straight lines with a discontinuity in between. This lack of correspondence between 

model and reality, however, is inconsequential for the purposes of conducting statistical 

inference for the presence of a u-shaped relationship (as opposed to for the purposes of 

fitting the data as well as possible).  

This is in stark contrast to the assumptions involved in testing u-shapedness 

relying on a quadratic regression. There statistical inference hinges directly on the 

functional form assumption. Moreover, the two-lines test does not assume the true 

functional form is linear. The inference is just as valid if the data are vs are not linear, and 

do vs do not have a discontinuity. The regression lines are being used merely to compute 

an average slope, and averages are meaningful and valid construct “even if” the 

underlying data have variance.   Figure 8 illustrates. The true relationship combines two 

different slopes, thus estimating a single slope introduces specification error, but that 

single slope nevertheless properly estimates the average slope in that range.   
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Fig. 7.  Linear regression recovers average slope in range even if effect is not linear. 
Note: R code to reproduce figure: https://osf.io/eswg6    

 

Moreover, the two-lines procedure must include a discontinuity at xc precisely 

because we simply want to rely on regression to estimate the average slope in the range, 

and if we do not allow a discontinuous change, if we estimate a segmented rather than an 

interrupted regression, then we introduce bias in the slope estimate. Figure 8 illustrates.  

 
Fig. 8. Forcing the two-lines to connect introduces bias 
Note: R Code to reproduce figure: https://osf.io/2w6xy  
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Performance of two-line test 

False-positive and False-Negative U-Shapes 

 I conducted simulations for a broad range of scenarios (see notes for Figure 9 for 

details) to assess type-1 and type-2 errors for examining u-shapes with a quadratic 

regression vs. the  two-line test. For the two-lines approach I considered not just the 

breakpoint identified by the aforementioned algorithm, but also for various alternative 

approaches. Setting it at: the highest fitted value from a quadratic regression, highest 

fitted value from the cubic spline, and at the point that maximizes the overall fit of the 

interrupted regression. Per the suggestion of the editor, I also estimate regressions with 

two interruptions, three total segments, and set the two breakpoints to maximize overall 

fit.   

Beginning with the false-positive rates calculations. I focused on true 

relationships that would be most likely to lead to a false-positive u-shape: an initial strong 

effect, followed by a long flat segment (if the true relationship has a strong effect 

throughout, it is virtually impossible to obtain a false-positive u-shape with the two-lines 

test). 

Figure 9A shows the quadratic regression approach to testing u-shapes has an 

unacceptably high false-positive, well above the nominal 5%.  In stark contrast, the 

two-lines test has an acceptable false-positive rate regardless of how the breakpoint is 

set.7,8   

                                                 
7 The breakpoint that maximizes overall fit is set using the ‘segmented’ package in R (Muggeo, 2003). 
8 Supplement 1 shows similar results for simulations where the true relationships is created using the 
logistic function rather than a combination of two linear or log-linear segments.  
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Because the quadratic regression is an invalid test, the right panel does not report 

power results for it. For statistical inference, we should select the most powerful test, 

among those that satisfy the nominal false-positive rate. If we are willing to use an 

invalid test, one with an elevated false-positive rate, we should rely on a coin that reads 

“u-shape” on either side: flipping the coin leads to 100% power.   Figure 9b shows the 

two lines test has the most power when the breakpoint is set using Robin Hood algorithm.  

 
Fig. 9 Detecting U-shapes  
Notes: Each simulated scenario involves a relationship between variables x and y where y=x+e for x<xc. 
For the false-positive simulations y=xc for x≥xc (flat; no further effect of x). For the power simulations at 
some point xd, with xd≥xc the effect becomes negative. For example, y=xc-(x-xd) if x≥xd. The scenarios 
combine the following parametrizations: (i) the distributions of x (normal, uniform, beta with left, beta with 
right skew, optimized for the quadratic as in McClelland (1997)) 9, (ii) the effect of x on y is y=x vs 
y=log(x), that is, linear vs log-linear, (iii) sample sizes of 100, 200, or 500, (iv) σ in e~N(0,σ) with σ being 
100%, 200% or 300% of the SD(y) before adding e, (v) the value of xc: 30th, 50th percentile of x, (vi) the 
value of xd : 30th, 50th, 70th, or 90th percentile of x, (vii) the slope of the negative effect of x on y when x>xd 
being 25%, 50%, 100% or 200% the magnitude of the slope when x<xc.  The full combination of options 
leads to 180 scenarios for false-positives and 2520 for power. The power panel shows only 2300, the 
remaining 220 have 99%+ power for all procedures. False-positive rates are based on 5000 simulations, 
power calculations on 500. R Code to reproduce figure: https://osf.io/9xwke   
 

 
 
 

                                                 
9 In particular, 25% of observations are x<.2, 25% x>.8, and 50% are .4<x<.6 (McClelland, 1997; Table 1). 
This distribution is said to maximize power to detect a u-shape if the true relationship is quadratic and the 
maximum value is obtained at “intermediate values of X” (p.9).  



Two-Lines 

25 
 

Demonstrations 

Figure 10 applies the two-line test to two examples in the published literature that 

appear to arrive at false-positive u-shape conclusions because they relied on quadratic 

regressions. Panels A&B revisit the analyses by Sterling, Jost, and Pennycook (2016) 

who wrote (in their secondary analyses section), that “those who were moderate in terms 

of their support for the free market appeared to be more susceptible to bullshit than 

extremists in either direction.” (p.356).  They arrive at this inverted-U conclusion because 

the quadratic term in the regression is significant (p=.026; Figure 10A). 

 I successfully reproduced their results analyzing their posted data.  Figure 10B, 

however, shows that the second line, while negative, is far from significant (p=.41). Keep 

in mind that if x and y were uncorrelated for high values of x, that is, if the true second 

slope were flat, 50% of estimates will be negative (and 41% of them as steeply negative 

as observed; that’s the meaning of the p=.41). The data are inconclusive: consistent with 

a u-shaped relationship, consistent with ideology and bullshit receptivity being 

uncorrelated among higher values of the former, and consistent with a monotonic effect. 

Again, the u-shape prediction was secondary to the authors. The paper’s core prediction 

is consistent with the first line in Panel B: “free market ideology was significantly but 

modestly associated with bullshit receptivity” (abstract). 
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Fig. 10 Quadratic vs Two-Lines applied to data from published papers 
Notes: In A & B each dot depicts a participant in a survey, y is how profound participants rated a series of 
“vague and meaningless statements,” x their endorsement of “neoliberal” principles. In C & D each dot is a 
country, y is its FIFA rating, x the share of players in the country’s team that play for a top professional team 
(e.g., Arsenal). Thin continuous lines in B and D are fitted values from cubic splines.  
R Code to reproduce figure: https://osf.io/hkt2a   

 

 Continuing with Panels C & D: Swaab, Schaerer, Anicich, Ronay, and Galinsky 

(2014b), in their Study 2, examined the relationship between the number of elite players 

in a country’s soccer team and its international FIFA rating. Their results, they write, 

“revealed a significant quadratic effect of top talent: Top talent benefited performance 

only up to a point, after which the marginal benefit of talent decreased and turned 

negative” (p.1584; emphasis added). I successfully replicate those results with 

independently obtained data (see Panel C), but in Panel D the second line is also positive. 

These data do not support the conclusion that there is such thing as ‘too-much-talent’ in 

international soccer.  
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Conclusions 
 

The use of quadratic regressions to test u-shaped relationships is as invalid as it is 

common. The two-lines test is the first valid test of u-shape relationships in the literature 

and is arguably the most straightforward test of the hypothesis of interest: that the 

average effect of x on y is of opposite sign for high vs low values of x.  

The two-lines test is expected to perform well as long as the true relationship of 

interest has at most two regions where the impact of x on y has opposite signs, that is, if 

the relationship of interest is: (i) flat overall (no effect), (ii) (weakly) monotonic, or 

(iii) u-shaped.  It will not perform well, at least in terms of interpretability, if the true 

relationship has more than two regions with different signs, for instance, if it is N-shaped, 

X-shaped or W-shaped, rather than U-shaped. These relationships, it is worth noting, 

invalidate the quadratic regression as well.  

The paper includes a supplement. Table 1 summarizes its contents. 

 
Table 1.  
Index of supplementary materials (available from https://osf.io/t6twm/)  
Section Pages 
Supplement 1. False-positive u-shapes if true relationship is logistic 1-2 
Supplement 2. Scatterplots for raw data behind specifications used in Figure 9B 3 
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