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General Article

Studying interactions in which a variable moderates the 
relationship between two other variables is common in 
psychology. For instance, 71% of articles in the March 
2020 issues of Journal of Personality and Social Psychol-
ogy, Journal of Experimental Psychology: General, and 
Psychological Science tested for interactions. The general 
approach to studying interactions is the same for the 
majority of statistical models commonly used by social 
scientists (e.g., linear and logit regression, multilevel 
models, structural equation modeling), and it consists 
of three steps. For concreteness, I discuss them relying 
on a stylized scenario in which one wishes to examine 
the interaction between the effects of age and gender 
on people’s weight. In the first step, one estimates a 
model that imposes the assumption that all predictors 
(including possibly nonlinear terms) and including the 
interaction have linear associations with the (latent, if 
applicable) dependent variable.1 For example, in the first 
step, one estimates the following regression: weight = a + 
b female + c age + d age × female + ε. In the second step, 
one tests the interaction, evaluating whether the estimate 
of d is significantly different from zero. In the third step, 

one probes the interaction, assessing how much the effect 
of gender changes as a function of age, combining the 
point estimates of b and d. In psychology, the most com-
mon procedure for probing interactions consists of com-
puting “simple slopes” (Aiken & West, 1991; Preacher et al., 
2006) and reporting the effect (“slope”) of gender at spe-
cific values of the moderator age, for example, 1 SD away 
from the mean.2

In this article, I am concerned with the consequences 
of violating (the often implausible) linearity assumption 
in the first step on the validity of the results in the sec-
ond and third steps. A useful perspective for thinking 
about the consequences of nonlinearities on testing 
interactions is “omitted variable bias”: how estimates in 
a regression are biased if relevant covariates are left out.

Studying interactions assuming the effects of x and z 
on y are linear is equivalent to omitting the nonlinear 
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portions of the effects of x and z from the regression. 
This highlights the key role that the association between 
x and z plays on the validity of the interaction term. In 
experiments, in which x or z are randomly assigned, any 
omitted nonlinear effects of x or z are expected to be 
uncorrelated with the interaction x × z, and thus incor-
rectly assuming linearity does not actually invalidate the 
testing of the interactions in experiments.3 This is why 
the proposed toolbox (see Table 1) indicates that it is 
OK to test interactions in experiments with linear mod-
els. It is the same intuition for why it is OK to analyze 
experiments without controlling for covariates; the vari-
ables researchers are omitting will not bias their esti-
mates of the effect of a randomly assigned treatment.

In observational data, in contrast, one typically 
expects (most) variables to be correlated (Meehl, 1990), 
especially pairs of variables that are not chosen arbi-
trarily but, rather, are chosen because it is believed that 
both are associated with the same dependent variable. 
With observational data, then, one expects the omitted 
nonlinearities of x and z to correlate with x × z. In other 
words, when variables are measured rather than manipu-
lated, incorrectly assuming linearity introduces bias in 
the interaction term (see e.g., Ganzach, 1997).4

The preceding paragraphs involved Step 2, testing the 
interaction. When it comes to Step 3, to probing interac-
tions, nonlinearities invalidate results both for data from 
experiments and from observational data. Figure 1 illus-
trates with the weight and gender example from before. 
Figure 1b highlights that there is a complex interaction 
between gender and age such that males get heavier 
than females starting at age 14 or so. A linear model 
cannot represent such a nonlinear interaction, and Fig-
ure 1c shows how when one relies on the linear model, 
one ends up projecting an incorrect sign reversal for 
babies such that baby girls are estimated to be heavier 
than baby boys.

Figure 1c shows, then, that probing the interaction by 
plotting the effect of gender for all ages, that is, relying 
on the Johnson and Neyman (1936) procedure, one 
falsely but confidently concludes that baby girls are sub-
stantially heavier than baby boys.

In sum, nonlinearities invalidate the testing of interac-
tions with observational data (in which x and z in x × z 
are expected to be correlated) and invalidate the probing 
of interactions in both experimental and observational 
data (i.e., even if x and z are expected to be 
uncorrelated).

There are good reasons to expect that nonlinearities, 
such as those depicted in Figure 1, are common in data 
collected by social scientists. From psychology, it is 
known that perception of change in physical and numer-
ical stimuli exhibits diminishing rather than constant 
sensitivity (Fechner, 1860; Kahneman & Tversky, 1979). 
From economics, it is known that marginal benefit is 
diminishing rather than constant and that marginal cost 
is increasing rather than constant. In addition, many of 
the variables collected by social scientists consist of 
bounded scales that inevitably show diminishing rather 
than constant effects because some participants hit the 
ceiling or floor of the scale and can no longer be affected 
by further changes of the predictor of interest.

Any study that involves the perception of physical or 
numerical stimuli, the presence of costs or benefits, or 
measurement through scales, then, is likely to involve 
nonlinear relationships. Figure 2 provides some concrete 
examples of the kinds of nonlinear relationships observed 
in real data. A reviewer of this article remained skeptical 
of the proposition that one should generally expect non-
linear effects; readers sharing this skepticism can consult 
Supplement 6 in the Supplemental Material available 
online (http://researchbox.org/1569.82) and the excellent 
discussion by Ganzach (1997, pp. 244–245).

Prior Work on Nonlinearities  
and Interactions

Just a handful of books and peer-reviewed tutorials 
appear to account for the vast majority of references 
social scientists use to guide the testing and probing of 
interactions (Aiken & West, 1991; Brambor et al., 2006; 
Cohen et al., 2003; Preacher et al., 2006; Spiller et al., 
2013). Aiken and West (1991) alone accumulated, as of 
May 2023, more than 54,000 Google citations, and 

Table 1.  Proposed Toolbox for Curvilinear-Robust Analysis of Interactions

Testing interactions
(Does z modify the  
effect of x on y?)

Probing interactions
(What is the effect of  

x for a given value of z?)

Case 1: experiments, r(x, z) = 0 - Linear model is OK. - �Good: Discretize z (e.g., median split)
- Better: GAM simple slopes

Case 2: observational data, r(x, z) ≠ 0 - �Often OK: linear model, 
control for x2 and z2

- More reliable: GAM

- GAM simple slopes

Note: GAM = generalized additive model.

http://researchbox.org/1569.82
Uri
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Preacher et al. (2006) accumulated another 5,500. These 
go-to references do not include discussions on how 
strong the linearity assumptions are (i.e., how at odds 
they are with what one should expect real-world data 
to look like) or how consequential the violation of such 
assumptions is. Possibly for this reason, few empirical 
articles have considered the impact of nonlinearities on 
the interpretability of the interactions they have reported. 
Although largely ignored by these tutorial pieces and 
most empirical work, some prior methodological articles 
have been concerned with the issues raised here.

Focusing on testing interactions, on establishing 
whether there is a statistically significant interaction, at 
least three articles (Cortina, 1993; Ganzach, 1997; Lubin-
ski & Humphreys, 1990) have warned that if the effect 
of x or z on y are not linear and x is correlated with z, 

then the estimate of the interaction is biased, and its 
false-positive rate (FPR) is inflated. Throughout this 
article, I refer to this as the problem of “correlated non-
linear predictors.” The authors of these 1990s articles 
assumed that all nonlinearities are essentially quadratic 
and thus considered true models only of this form: y = 
a + bx + cz + dx × z + ex2 + fz2 + ε (see Note 5 for rel-
evant quotes from these articles).5

Upon assuming a true model that is quadratic, to 
address the problem of correlated nonlinear predictors, 
these articles naturally proposed researchers estimate 
quadratic regressions, that is, including x2 and z2 as 
covariates. In relation to this work, I relaxed the assump-
tion that all nonlinear relationships are quadratic and 
relaxed the assumption that when x and z are correlated, 
their association is linear. Moreover, I empirically 
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evaluated how well the proposal of including x2 and z2 
as covariates performs for testing the x × z interaction 
with nonlinear correlated predictors and found it per-
forms surprisingly well but not best; having higher FPRs 
and lower power than the generalized additive model 
(GAM)-based alternative proposed here.

In terms of probing interactions, on estimating the 
effect of x on y for different values of z, Hainmueller et al. 
(2019) discussed two problems with current practice (in 
political science). First, researchers sometimes probe 
interactions at moderator values for which no data exist, 
and second, sometimes interaction effects are nonlinear.6 

They introduced the “binning estimator” as an alternative 
to the linear probing of interaction to addresses these 
two shortcomings. The binning estimator splits the data 
into segments based on the moderator (e.g., low, 
medium, and high values of the moderator) and esti-
mates separate linear models within segments.7 The most 
important contrast between their work and the present 
article is that dichotomizing in general and the binning 
estimator in particular do not address the threat posed 
by correlated nonlinear predictors, a problem that was 
not mentioned by Hainmueller et al. Indeed, with obser-
vational data, the results obtained with the binning 
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Fig. 2.  Examples of nonlinear associations in real data. In all figures, the lines are formed by fitting the data with 
flexible models (GAM for a and d; third-degree polynomials for b and c). (a) N = 47,729 survey responses from 
the General Social Survey (GSS). (b) N = 501 respondents to survey run by authors on attitudes toward genetically 
modified foods. (c) N = 956 survey respondents from the National Longitudinal Survey of Youth. (d) N = 12,427 
interviews of applicants to an MBA program. This latter panel involves an article I coauthored with Francesca 
Gino, who was found guilty of academic misconduct after a near 2-year investigation by Harvard (for up-to-date 
information on this paper see https://manycoauthors.org/gino/95). R code to reproduce the figure is available at 
https://researchbox.org/1569.5.

https://researchbox.org/1569.5


Advances in Methods and Practices in Psychological Science 7(1)	 5

estimator are often as invalid as they are with the simple 
linear model it is designed to improve on (Simonsohn, 
2023).

Finally, in terms of interpreting interactions, in terms 
of assessing whether a validly tested and probed interac-
tion has the implications for the theory that motivated 
the study, Loftus (1978) made the important observation 
that when the variables one studies are proxies for the 
latent variables of interest, an observed interaction with 
measured variables need not imply an interaction among 
the latent variables (see also Krantz & Tversky, 1971). 
This observation is important and unfortunately has 
been largely ignored by researchers (Wagenmakers 
et al., 2012), but it is separate from the issues that con-
cern this current article. Loftus’s observation is about the 
interpretation of statistically valid interactions, whereas 
this article is about the statistical (in)validity of interac-
tion terms in linear models.

Alternatives to Assuming Linear Effects

I consider three main approaches for relaxing linearity 
assumptions: dichotomization, adding quadratic terms 
to a linear regression, and relying on GAMs. I provide 
overviews of the three approaches next and pay more 
attention to the more novel approach: GAMs.

Approach 1: dichotomization

The first and simplest approach for handling nonlineari-
ties is to force linearity by dichotomizing the moderator. 
Rather than taking age as a continuous variable, one 
classifies boys and girls into, for example, above and 
below median age and carries out a simple 2 × 2 com-
parison of the four means. With dichotomization, the 
intuition goes, the linearity assumption (for the modera-
tor) cannot be violated because two points always form 
a straight line. Dichotomization has long been relied on 
by social scientists, usually on grounds of its “analytical 
ease and communication clarity” (Iacobucci et al., 2015, 
p. 652). Dichotomization has also long been objected to 
by methodologists on grounds that it has lower statistical 
power (Cohen, 1983).8 Considerations of lower statistical 
power aside, dichotomization has a subtler but more 
serious problem. As I demonstrate in a later section, 
when the two predictors in the interaction are correlated 
(e.g., what one generally expects when neither x nor z 
were randomly assigned), underlying nonlinearities in 
x can invalidate interactions with median splits of z as 
much as they invalidate interactions with continuous z. 
Thus, for testing interactions between correlated non-
linear factors, median splits suffer from elevated Type 2 
and Type 1 errors.

Approach 2: adding quadratic controls 
(x2 and z2)

As mentioned above, a few authors have advocated for 
including quadratic terms of x and z when estimating 
regressions with the purpose of testing an x × z interac-
tion (Cortina, 1993; Ganzach, 1997; Lubinski & Hum-
phreys, 1990). They conjectured that quadratic controls 
were sufficient to deal with any nonlinearity (see Note 
5 here), but they did not evaluate such conjecture. They 
did not carry out simulations assessing how well qua-
dratic controls work if real functional forms are neither 
exactly linear nor exactly quadratic. I carried out that 
evaluation here. As I show later, I found that quadratic 
controls perform surprisingly well under a broad range 
of (nonquadratic) functional forms but that they are on 
occasion insufficiently flexible to ensure valid inferences 
in the presence of realistic nonlinearities. Quadratic con-
trols, moreover, can lead to substantially lower statistical 
power than do the procedures proposed in this article. 
Finally, when it comes to probing interactions, to assess-
ing how big the effect of x on y is for different values 
of z, quadratic controls lead to correct estimates only if 
the true functional form is quadratic, an arbitrary and 
(practically speaking) untestable assumption.

Approach 3: GAMs

A third approach moves one away from arbitrary assump-
tions about functional from (quadratic) and arbitrary 
dichotomizations (median split) and toward estimating 
the functional form of interest. A few procedures allow 
flexible functional form estimation (e.g., locally esti-
mated scatterplot smoothing, kernel regression), but the 
one that seems most applicable to a broad range of data 
structures, in terms both of analytical flexibility and com-
putational efficiency, while providing interpretable 
enough estimates is GAMs (Hastie & Tibshirani, 1987; 
Wood, 2017).

Although GAMs were developed decades ago, they 
have not been used much in psychological research yet.9 
I hope this article will change that. GAM is conceptually 
similar to linear regression in that they both estimate the 
relationship between predictor variables and a depen-
dent variable. The key difference is that regressions 
assume all entered effects are linearly associated with 
the (sometimes latent) dependent variable, whereas 
GAMs estimate the functional forms of each effect.10

From a user perspective, relying on GAMs can be 
quite similar to relying on linear regressions. I next illus-
trate with a simple example, written in R, in which data 
are analyzed with a linear regression and with a GAM 
side by side. I start simulating data, making variables x, 
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z, and e be (standard) normal and making y depend 
linearly on them:

set.seed(123)
n = 500
x = rnorm(n)
z = rnorm(n)
e = rnorm(n)
y = x + z + x*z + e

One can estimate a linear regression with:

lm1 = lm(y~x+z+x:z)

And one can estimate a GAM with:

gam1 = gam(y~s(x)+s(z)+ti(x,z))

In the GAM, s() indicates a “smooth” (flexible func-
tional form) main effect, and ti() indicates a flexible 
interaction term. The output for lm1 is one researchers 
are familiar with: four point estimates. The GAM, like 
the linear model, produces four p values: for the inter-
cept, the two predictors, and their interaction. But when 
it comes to the coefficient estimate, interpretation is 
more difficult. For the example above, for instance, GAM 
produces 35 instead of four coefficients. I argue here 
one should tolerate GAMs’ harder to interpret output for 
two key reasons. First, GAMs’ output is more likely to 
be statistically valid and descriptively accurate. As I show 
later in this article, the linear model’s easy to interpret 
results can be extremely misleading and statistically 
invalid, especially for interactions. One can more easily 
read the output from a regression, then, but that easy to 
read output from the regression is also too easily wrong. 
The second reason I think one should tolerate GAMs’ 
harder to interpret output is that one can make it inter-
pretable without much effort, relying on the same tech-
niques researchers rely on to make regression coefficient 
estimates for interactions interpretable, the aforemen-
tioned simple slopes (Aiken & West, 1991).

As interpretable as the output for a linear regression 
seems, when interactions are involved, it is actually not 
that easy to interpret. As researchers, we want to know 
“the” effect of x on y, but when an interaction is involved, 
there may be infinite effects of x on y, one for each pos-
sible value of z. This is why to interpret regressions, 
researchers probe them (Aiken & West, 1991). With 
simple slopes in particular, researchers compute the 
expected value of y for all values of one predictor, keep-
ing the other predictor(s) fixed at a given value.

Returning to the simple example above, the estimated 
regression equation is y = .02 + 1.06x + 1.06z + .975x × 
z. If one is interested in “the” effect of x on y, that regres-
sion equation gives a different estimate for every 

possible value of z. With simple slopes, one would fix 
z at some point, for example, z = 1, and plot the rela-
tionship between y and x for z = 1. With GAMs, research-
ers can do the same calculation, reducing the 
interpretability disadvantage that GAMs suffer from. 
Moreover, simple slopes for the linear model and for 
GAM can be estimated with the same (wrapper) function 
in R, “predict.”11 The code below carries out simple-slope 
calculations for the linear model and for GAM:

#Values of x to consider
  xs = seq(-2,2,.1)

#linear simple slopes when z=1
  yh1=predict(lm1,newdata=data. 
    frame(xs,z=1))

#GAM simple slopes when z=1
  yh2=predict(gam1,newdata=data. 
    frame(xs,z=1))

The first line of code generates the values of x that 
are of interest for probing, going from −2 to 2 in incre-
ments of .1. The second line of code produces the 
expected value of y, given the linear model results, for 
x values between −2 and 2 when z = 1. The third line 
does the same given the GAM results.

An (older) alternative to simple slopes is the Johnson 
and Neyman (1936) procedure (also known as “flood-
light analysis” and “regions of significance”). It estimates 
the marginal effect of one variable for every possible 
value of the other. In this article, I focus on and advocate 
for GAM simple slopes rather than GAM Johnson Ney-
man because depicting the levels of the dependent vari-
able, rather than the marginal effects, makes it easy to 
give results a proper contextualized interpretation. But 
GAM Johnson Neyman is easy to implement as well. For 
an example with R code, see Supplement 5 in the Sup-
plemental Material (https://researchbox.org/1569.82).

GAMs can be applied to a wide range of data struc-
tures. One can estimate a GAM when the dependent 
variable is binary or categorical (in lieu of probit or logit 
regressions). One can also include random effects into 
GAMs (Simpson, 2021; Wood, 2013, 2017) and estimate 
multilevel models (see e.g., the gamm4 package in R).

GAMs’ estimation procedure includes a penalty for 
overfitting; in practice, this means that if an association 
is best described by a linear model, GAMs will tend to 
deliver a linear model, but if it is best represented by a 
cubic function, sine function, or combination of the two, 
it will tend to deliver that instead. The performance of 
GAMs in recovering functional form is impressive for 
researchers who still rely on the 19th-century technology 
of fitting data with straight lines. See Figure 3.

https://researchbox.org/1569.82
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In the next section, I demonstrate the application of 
GAM simple slopes to data from psychology articles, but 
first, in a short subsection, I provide a quick summary 
of the proposed toolbox I put forward in this article for 
testing and probing interactions in social science.

Toolbox preview

The goal of this article is to deliver a curvilinear-robust 
toolbox for studying interactions in social science. In the 
remaining sections, I motivate and demonstrate the tools 
in the proposed toolbox by reanalyzing published data. 
I then evaluate the validity of the tools, for a broad range 
of scenarios, via simulations. Anticipating the conclu-
sions of these analyses, I provide a summary of the 
proposed toolbox in Table 1.

Examples of GAM Simple Slopes With 
Data From Psychology Articles

In this section, I report simple slopes, both linear and 
GAM, constructed using data from two published arti-
cles. I first return to the MBA interview data from Figure 
2d. The data set includes applicants’ work experience 
and country of origin. A linear regression using these 
variables to predict interview score results in: score = 
2.2 + .013 × Experience – .166 × American + .005 × 
American × Experience.

Figure 4 shows the linear simple slopes implied by 
that equation. We learn that Americans benefit more 
from experience and that the gap grows, linearly of 
course, with experience. The narrow confidence bands 
imply statistically significant differences for almost every 
level of experience.12

To accompany the visual display of simple slopes, I 
report also statistical contrasts comparing the predicted 
y value of the two plotted curves for a few values in the 
x-axis. I use as defaults the median and the 15th and 
85th percentiles; the latter two correspond roughly to 
the mean ±1 SD for a normally distributed variable. One 
can think of those three contrasts as points in the John-
son and Neyman (1936) curve.13 For instance, the first 
such contrast in Figure 4a indicates that the estimated 
effect of being an American applicant, among partici-
pants with very little experience, is negative and highly 
significant in the linear model and much smaller and 
with a higher p-value in the GAM.

Although the three contrasts are of the same sign 
across the linear model and GAM, quantitatively, the 
linear model’s contrast are substantially larger (between 
50% and 100% larger). Much more interesting in this 
case, however, is the qualitative comparison of the over-
all shape of the simple slopes.

Note that the GAM suggests that (a) scores do not 
continue to diverge by more and more with greater 
experience, (b) the two lines are essentially identical up 

True Function One Dataset GAM Estimate

a b

c d

Fig. 3.  Examples of GAM correctly recovering underlying functional forms. The four figures are based 
on the same draw of N = 1,500 x values dawn from N(0, 3), with the y values corresponding to (a) y = x, 
(b) y = sin(x), (c) y = x3 – x2, and (d) min(log(x + 14),log(14)). Random noise N(0, SD) was added, with 
SD equal to twice the standard deviation of Y caused by x. R code is available at https://researchbox 
.org/1569.15.

https://researchbox.org/1569.15
https://researchbox.org/1569.15
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to 3 years of experience, and (c) overall, the benefit of 
experience plateaus rather than continues to increase at 
a constant rate throughout. The picture that arises from 
the GAM simple slope is richer, and it is based on the 
data rather than on arbitrary assumption about the data. 
If one assumes the impact of experience on interview 
scores is linear, the model will show that the effect of 
experience on interview score is linear, but one is not 
really learning from the data (in this regard); one is, 
instead, imposing on the data.

Figure 5 provides a second example, this one based 
on data collected by Lawson and Kakkar (2022). Their 
core hypothesis was that “the sharing of fake news is 
largely driven by low conscientiousness conservatives 
[italics added]” (p. 1154). Note that here, the dependent 
variable is binary, and thus the “linear” simple slopes is 
linear in the “generalized linear models” sense, in which 
a logit regression is considered a linear model.

The GAM simple slopes allow for a more focused and 
supportive, in this case, evaluation of the prediction that 
the effect of interest is driven by conservatives. Looking 
again first at the contrast at the 15th quantile of the focal 
predictor, one sees that although the linear model indicates 
a reversal for very liberal participants, the GAM suggests 
such reversal may be spurious, arising from imposing lin-
earity on all effects (like the heavier baby girls in Fig. 1).

Lin et al. (2023) noted that Lawson and Kakkar’s (2022) 
result should not be interpreted as supporting an effect 

on the sharing of fake news because low-conscientious-
ness conservatives were more prone to sharing in gen-
eral, not only fake news. They also reported five 
conceptual replications of the studies by Lawson and 
Kakkar that did not replicate the interaction. I have cho-
sen to keep this example here despite its apparent lack 
of robustness because only upon producing GAM simple 
slopes on the data collected by Lin et al. did I become 
convinced of their failure to replicate. It does, therefore, 
illustrate the practical use of GAM simple slopes: provid-
ing more informative descriptions of interaction results. 
Not being an expert, I do not take a position on the 
substance of this debate on the sharing of fake news.

Having illustrated the similarities and differences 
between linear and GAM simple slopes, in the next 
subsection, I rely on simulations to contrast their per-
formance for probing interactions when at least one of 
the two variables in the interactions was randomly 
assigned (i.e., in experiments).

Probing Interactions in Experiments 
(When at Least One Factor in x × z Is 
Randomly Assigned)

FPRs for probed interactions

In this section, I rely on simulations to evaluate the 
performance of three alternative tools that can be used 
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slopes plots with different cutoffs and k values are presented in, respectively, Supplements 1 and 2 in the Supplemental Material available 
online. R code to reproduce figure is available at https://researchbox.org/1569.18.
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to probe interactions: (a) dichotomization (median split), 
(b) linear simple slopes, and (c) GAM simple slopes.

For the simulations in this section, I considered exper-
iments in which treatment x is randomly assigned (x = 
1 or x = 0) and the true association between x, z, and y 
involves an attenuating interaction: The effect of x on 
the dependent variable, y, is reduced but never reversed 
by a moderator variable, z. For example, the true model 
y = x/z, with z > 0, meets this description; bigger z val-
ues reduce the effect of x but never reverse it. Focusing 
on attenuating interactions simplifies the reporting of 
results: I report how often each tool used to probe 
interactions falsely concludes the effect of x on y flips 
in sign with high enough zs when in fact it never does.

In terms of the true associations, as is detailed in the 
caption for Figure 6, I considered two baseline scenarios: 
a linear effect with a ceiling and concave smooth func-
tion. For each, I created 36 variations with different 
sample sizes, functional forms, and distributions of the 
moderator variable. Each of the resulting 72 variations 
were used to run 5,000 simulations, which kept track of 
how often a false-positive sign reversal was detected.

For linear and GAM simple slopes, I consider a result 
to be false-positive when the effect of x is estimated as 
significantly negative, p < .05, when the moderator is at 
85th percentile of its observed values (again, the true 
effect of x is never negative no matter what value z 
takes). For the median split, I consider a result to be 
false-positive when the slope for the above-median mod-
erator values is negative and p < .05.

Valid statistical tests have a FPR, for p ≤ .05, no greater 
than the nominal 5%. The poor performance of linear 
simple slopes depicted in Figure 6 is striking. For many 
scenarios, the approach that is the current “gold stan-
dard” for much of social science for probing interactions 
achieves a 100% FPR; it always arrives at statistically 
significant evidence of something that does not, in fact, 
exist. The two alternative approaches, in contrast, are 
slightly conservative for most scenarios and close to the 
5% nominal rate even in the most extreme ones.14

Going beyond p values and FPRs for comparing sta-
tistical approaches, I note that if a procedure has an 
inflated FPR, then one knows its confidence interval will 
not have proper coverage; thus, deciding which model 
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to estimate based on confidence interval performance, 
rather than FPR, would also discourage relying on linear 
simple slopes. In terms of model fit, the mean squared 
error for the linear model is, across the 72 scenarios, 
between 3 times and 13 times larger than for GAM. 
Because these are simulated data, one can compare fit 
in terms of the ground truth. That is, instead of asking 
how well a model fits the (simulated) data, one can ask 
how close to the truth is each estimated model. In addi-
tion to its intuitive appeal, this approach to assessing 

model fit builds in protection against overfitting. GAMs 
could have lower MSE by overfitting the data, but they 
cannot get closer to ground truth by overfitting the data. 
If a model is reading random error as signal, then it is 
going to get further from the ground truth. I thus also 
computed a “truth-MSE,” the average squared error 
between each observation’s true y value and the fitted 
value based on the models. It is not close. Across the 72 
scenarios, “true-MSE” is between 10 times and 382 times 
higher with the linear model.
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Why do GAM simple slopes outperform?

To illustrate why GAM simple slopes outperform linear 
simple slopes, Figure 7 depicts results for one of 5,000 
simulations for one of the 72 scenarios depicted in Fig-
ure 6. It illustrates how the arbitrary linearity assumption 
forces a spurious sign reversal for the estimated effect 
of x on y. This is again analogous to the heavier baby 
girls from Figure 1 and the apparently spurious reversal 
of the impact of conscientiousness for very liberal 
respondents in Figure 5.

Statistical power for probing 
interactions in experiments

Here, I consider the power properties of GAM simple 
slopes for experimental data (in which either x or z in  
x × z was randomly assigned). The FPRs of the linear 
simple slopes shown in the previous subsection seem 
sufficiently high to justify abandoning the approach even 
if it provided higher statistical power than the alterna-
tives. But note that linear simple slopes can easily have 
lower statistical power than even the median split. To 
appreciate this, one does not need new simulations. Look 
back at the right figure of Figure 6. For high values of z, 
simple slopes estimate the effect of x as negative, in the 
most extreme cases with FPRs of 100%; thus, the model 
has a 0% chance of detecting the actual positive effect.

In other words, although median splits have been 
justifiably criticized for decades for having lower power 
than the linear model to test interactions (Cohen, 1983), 
they can have greater power for probing those interac-
tions. Just to be safe, I state this again. The long-standing 
claim that dichotomization lowers power for testing an 
interaction is correct. What does not follow from this 
true fact, however, is that a linear simple slope is a more 
powerful approach for probing an interaction. By avoid-
ing specification error, the median split can outperform 
linear models when probing interactions (again, in 
experiments, when one factor in x × z is randomly 
assigned). Nevertheless, it is generally the case that the 
median split will have lower power for probing interac-
tions than will GAM simple slopes. Unless one is unable 
to implement a GAM simple slope, then, a median split 
is not the best option for probing interactions.

It is interesting to consider, as a boundary case, the 
unlikely scenario in which the true model is perfectly 
linear. How much less power do GAM simple slopes 
have to probe such interactions in experiments com-
pared with linear simple slopes? Figure 8 reports encour-
aging results. Across 16 scenarios, varying the distribution 
of the moderator and the slopes involved in the linear 
interaction, GAM simple slopes achieve a very similar 
level of precision/power as do the linear simple slopes. 
The intuition is that GAMs build in protection against 

overfitting, and thus, they report linear effects when true 
effects are linear. After paying a small penalty in power 
for the functional-form flexibility, one gets linear-model 
estimates with GAM when the true model is linear.15

In sum, switching from linear to GAM simple slopes 
to evaluate experimental results would (a) eliminate the 
threat of possibly high FPRs when effects are not linear, 
(b) substantially increase power in some cases when the 
true effect is not linear, (c) improve the qualitative over-
all characterization of the relationship of interest, and 
(d) not meaningfully reduce power in the unlikely sce-
nario of an actual linear relationship. There do not seem 
to be any reasons to continue relying on linear rather 
than GAM simple slopes.

Testing Interactions With Observational 
Data (With Measured Rather Than 
Manipulated Variables)

In the previous section, I covered the probing of interac-
tions composed of predictors expected to be uncorre-
lated (e.g., where x or z in x × z was randomly assigned 
in an experiment). In this section, I move on to (a) 
testing rather than probing and (b) interactions in which 
x and z could be correlated (e.g., when both x and z 
are measured rather than manipulated).

As explained in the introduction, the challenge cur-
vilinear relationships pose to testing interactions is a 
special case of the challenge omitted variables pose to 
testing regression coefficients more generally. When one 
omits a relevant variable from a regression, coefficients 
for included variables that correlate with the omitted 
variable can be biased, and thus omitting the nonlinear 
portions of x and z bias the estimate of x × z. This is 
why incorrectly assuming linearity when testing the x × 
z interactions is OK in experiments in which x or z was 
randomly assigned (because x × z will not correlate with 
omitted nonlinear terms), but it is not OK when x and 
z could be expected to be correlated because the omit-
ted nonlinear portions of x and z are expected to cor-
relate with x × z and thus bias its estimate.

Example of an invalid interaction test 
in data from a published article

Preacher et al. (2006) probably constitutes the most cited 
peer-reviewed article giving researchers guidance on 
how to probe regression interactions. I reanalyze here 
the only example in that article (see their section, “An 
Example,” pp. 444–446). The data set, from the National 
Longitudinal Survey of Youth, involves 956 children as 
the unit of analysis; performance on a math test as the 
dependent variable, y; and measures of children’s anti-
social tendencies, x, and hyperactivity, z, as the key 
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predictors. Preacher et al. used this data set to illustrate 
the use of (linear) simple slopes. Here, in contrast, I am 
not interested in probing the interaction but in testing 
it. Despite being a tutorial on the interpretation of inter-
actions, Preacher et al. did not discuss the issue of inter-
est here, the invalidating impact of correlated nonlinear 
predictors.

Estimating the linear model in their article, I perfectly 
reproduced the reported point estimate and p value for 
the focal interaction (b = −0.3977, p = .0055).16 Figure 9, 
however, shows that for this data set, one should expect 
and actually observes the linear model having an inflated 
FPR for the interaction.

Figure 9a shows that at least one predictor in the 
interaction has a likely nonlinear effect, and Figure 9c 
shows that both predictors are correlated. As explained 
earlier, correlated nonlinear predictors bias the interac-
tion term, which will typically raise the FPR. Figure 9d 
reports that the estimated FPRs are indeed well above 
the nominal 5%. I computed FPRs by simulating data 
under the null, forcing the absence of an interaction, 
and assessing how often the linear model obtained a 
statistically significant interaction. For details, see Sup-
plement 3 in the Supplemental Material.

Preacher et al. (2006) used these data to demonstrate 
the calculations and interpretations of probed interac-
tion; it is likely that the ultimate correctness of the model 
they estimated was of secondary importance to them.17 
Thus, my analyses are not meant as a narrow criticism 
of how they analyzed this data set but as a general point 
about how we as a discipline have long overlooked the 
invalidity of linear models to study interactions. Even 
researchers writing tutorials about interactions have 
overlooked it.

Having provided the intuition for the problem cor-
related nonlinear predictors pose for testing x × z inter-
actions, in the next subsection, I explore the performance 
of alternative tools for testing interactions in the pres-
ence of correlated nonlinear predictors.

Simulations and the FPRs testing 
interactions between correlated 
nonlinear predictors

The goal of the simulations reported in this subsection 
is to assess the performance of the alternative tools for 
testing interactions in a very broad range of scenarios 
involving nonlinear effects. The alternative tools 
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Power for GAM Simple Slopes when True Model is Linear

50% Power for Linear Simple Slopes
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Fig. 8.  Relative power for linear versus GAM simple slopes. The bar plots depict the statistical power, obtained by 
GAM simple slopes, testing the null that the effect of x is zero when the moderator z is at its 85th percentile. The 
simulated functional form is perfectly linear and calibrated across scenarios to have 50% or 80% power for linear 
simple slopes. Across the 16 scenarios, the simulations vary the distribution of the moderator z (to be uniform, beta, 
or normal), the size of the interaction (true coefficient for x × z), and the sample size. R code to reproduce the figure 
is available at https://researchbox.org/1569.30.
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considered, which I contrast to the traditional approach 
of testing the coefficient of x × z in the linear regression 
model, involve (a) dichotomizing the moderator, (b) 
adding quadratic x2 and z2 as covariates, and (c) estimat-
ing a GAM instead of a linear model. Because I found 
that the GAM p values are incorrect (I relied on the R 
package mgcv that comes bundled with R), I also report 
results for GAMs with bootstrapped p values.18,19 As a 
preview of the results, this latter approach, “bootstrapped 
GAM,” is the only one that performs adequately in all 
scenarios considered.

To avoid stumbling on a simulated scenario that by 
chance happens to make one tool work better than the 
other, I created 3,840 scenarios through the exhaustive 
combination of several of the key operationalizations 
behind the simulated data. Figure 10 shows stylized 
depictions of those operationalizations.

For example, one of the 3,840 scenarios involved x 
having a skewed-high distribution, while being correlated 
r = .5 with z through a log-linear relationship, in which 
x has a cubic effect on y and z has a log-canopy effect 
on y, studied with 750 observation. In consideration of 

https://researchbox.org/1569.33
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computing time, I randomly selected 300 of these 3,840 
scenarios and simulated 5,000 data sets for each scenario. 
For each, I tested for an interaction using the five afore-
mentioned analytical tools. Because there is no interac-
tion in any of the scenarios, all obtained p < .05 results 
are false-positive. A curvilinear robust tool for testing 
interactions should thus obtain p < .05 in about 5% simu-
lations for each of the 300 scenarios considered. The 
actual proportions of p < .05 for each tool are depicted 
in Figure 11.

First, I show that the linear model and the median 
split are strikingly invalid for the majority of scenarios 
considered. It is worth emphasizing that approximately 
all articles in social science that test interactions rely on 
one of these two tools. This does not mean, however, 
that all published interactions are false-positive. In fact, 
almost surely many are not.

Second, and surprisingly, the simple solution of 
merely adding x2 and z2 to the linear model (Cortina, 
1993; Ganzach, 1997; Lubinski & Humphreys, 1990) 
achieves near nominal FPRs in the vast majority of sce-
narios considered despite the presence of specification 
error (in none of the models is any true relationship 
exactly quadratic). It is worth pointing out that although 
adding quadratic controls has been advocated for in 
several articles, this seems to be the first effort to sys-
tematically evaluate how such solution performs when 
the assumed functional form, quadratic effects of x and 
z, is not correct. Although the idea of using quadratic 
controls is old, evidence that this is a good idea is new.

There are a few specifications, however, in which this 
approach suffers from markedly inflated FPRs, falsely 

rejecting the null more than 25% of the time. It is ulti-
mately an empirical and difficult to answer question 
whether functional forms in the real data sets analyzed 
by social scientists tend to look like the majority of sce-
narios in which the quadratic controls fix the problem 
at hand or like the minority of scenarios in which it does 
not. For what it is worth, returning to the Preacher et al. 
(2006) example discussed in the previous section, add-
ing quadratic controls leads to the nominal 5% FPR for 
the linear model. Returning to the simulation results from 
Figure 12, I show that although the p value from the 
GAM overrejects the null, the bootstrapped p value per-
forms well for all scenarios considered, although it does 
go over 1 to 2 percentage points above 5% for some 
scenarios.

Note that in the absence of the bootstrapping correc-
tion, the quadratic solution outperforms GAMs. I return to 
the relevance of this poor performance of p values gener-
ated by the GAM procedure in the general discussion

Simulations and statistical power  
for testing interactions with  
correlated predictors

In the previous subsection, I demonstrated the superior 
performance of GAMs over linear models, in terms of 
false-positive rates, when the true functional form is not 
linear. A relevant question is the price paid in terms of 
power to achieve this lower Type 1 error rate. As before, 
I consider the corner case when the true model is linear, 
but I also consider the case when the true model is not. 
See Figure 12.
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Relationship between Predictors
z = (x)

Linear Log Linear Cubic Canopy Log Canopy U-shaped

Effect of x on y

Effect of z on y

Note: Noise is Added so that Either
r(x,z) = .25 or r(x,z) = .5

Skewed Low Skewed High UniformNormal

Log Linear

Log Linear

Cubic

Cubic

Canopy

Canopy

Log Canopy

Log Canopy

U-shaped

Fig. 10.  Operationalizations for computing false-positive rate of interaction with correlated predictors. R code to 
reproduce the figure is available at https://researchbox.org/1569.37.

https://researchbox.org/1569.37
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I show that when x and z in x × z are uncorrelated, 
there is essentially no difference in power across the 
four procedures. The more correlated x and z are, the 
higher the consequences of misspecification are (as 
mentioned before, this is because the omitted nonlinear 
portion of an effect is then correlated with the interac-
tion and thus biases it). Overall, although there are sce-
narios for which switching to GAMs imposes power 
losses, these tend to be small losses. In addition, in more 
realistic scenarios, in which functional form is not per-
fectly linear, GAMs offer higher power than the current 
tools in the social-scientist toolbox do, possibly much 
higher power. Note that in some of the scenarios in these 
figures, the linear model has very high “negative” power, 
a high probability of obtaining p < .05 for an effect of 
the wrong sign. It is difficult and perhaps impossible to 
be confident about functional form in social science, and 
when functional form is uncertain, GAMs offer better 

expected performance in terms of both Type 1 and Type 
2 errors.

GAMs’ Limitations

Having advocated for GAMs through most of this article, 
in this section, I discuss what I consider to be its four 
main limitations.

Limitation 1: interpretability

A commonly raised shortcoming for GAMs is that their 
black-box nature makes them “somewhat less interpre-
table than linear regression” (G. James et  al., 2021,  
p. 309). This shortcoming, however, is not too difficult 
to circumvent by expressing GAM results in familiar 
forms, such as GAM simple slopes. Interactions even in 
linear models are actually difficult to interpret, which is 
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Fig. 11.  False-positive rates (FPRs) for interactions with nonlinear and correlated x and z predictors. The y-axes 
depict the percentage, out of 5,000 simulations, for each scenario in which the interaction term obtained a statisti-
cally significant result (p ≤ .05) despite the true interaction being zero. The 300 simulated scenarios are generated 
combining the operationalizations depicted in Figure 10 (a random subset of 300 out 3,840 scenarios were run). 
The GAM was estimated using R’s “recommended” package, mgcv, with syntax: gam(y~s(x)+s(z)+ti(x,z)). The boot-
strapped GAM p value for the interaction smooth is obtained by first estimating a model without the interaction, 
gam(y~s(x)+s(z)), and then using this “null” model to generate 100 (wild) bootstrapped samples, adding to each 
predicted value the observed residuals from that model, each multiplied with independently drawn at random 1 
or −1. This is repeated 100 times, and the adjusted p value is the share of these bootstrapped samples in which 
the p value for the interaction, in gam(y~s(x)+s(z)+ti(x,z)), is at least as low as that obtained in the observed data. 
Given computational costs, a sample of the 300 scenarios were reran with bootstrapping. Specifically, I reran the 
20 scenarios with the highest FPR for the GAM model and then every 10th scenario below the 280th (so, the 270th 
highest FPR for the GAM interaction, the 250th highest, etc.). For more details, see Supplement 4 in the Supple-
mental Material available online. R code to reproduce the figure is available at https://researchbox.org/1569.42.
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Fig. 12.  Statistical power to detect an interaction when true functional form is and is not linear. Each row reports estimated power for one 
scenario, depicted in the first column, varying the correlation between the factors in x × z. Every simulation has 500 observations, and x 
and z are normally distributed. Negative power indicates the probability of obtaining a p < .05 result for the interaction with the wrong sign. 
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precisely why researchers probe them, computing linear 
simple slopes. As I have shown throughout the article, 
GAM simple slopes are easy to produce and just as easy 
to interpret as linear ones.

In addition, it seems odd to give any weight to inter-
pretation ease when the alternative, the easier to inter-
pret result, is simply wrong. Imagine a choice between 
two watches: a digital watch with large and easy to read 
numerals but broken, permanently stuck at an easy to 
read “3:45:00 PM” versus an analog watch without any 
numerals but always showing the correct time of day. 
One would not give any weight to interpretation ease 
when choosing between these watches.

Limitation 2: specification ambiguity

Linear regressions have relatively few options in terms 
of implementation, concerning primarily how standard 
errors are computed (e.g., relying on robust, clustered, 
or homoskedasticity-assuming standard errors). GAMs, 
in contrast, have many options, from the estimation pro-
cedure (e.g., REML vs. GCV) to the penalty for overfitting 
to whether the number of knots is preset or estimated 
to the flexibility (number of base functions) behind any 
particular smooth. Software that implements GAMs does 
make default choices for all of these, but those defaults 
may change over time and differ across statistical pack-
ages. Moreover, any user can opt out from these defaults 
when analyzing any given data set. This specification 
ambiguity poses two main challenges, one for authors 
and one for readers.

In terms of authors, they must somehow make all 
those decisions, and they may not have a priori basis or 
sufficient understanding to do so (in fact, probably most 
GAM users lack both, especially if GAMs become popu-
lar as quickly as I hope). In terms of readers, simply 
reading from an article that a GAM is behind a particular 
result is not enough to know just what the authors did. 
This challenge of specification ambiguity, which affects 
authors and readers, does seem important but is 
manageable.

First, default values do tend to be sensible and are 
not often consequential; absent additional information, 
using the default is a good strategy for most situations. 
For example, a reviewer asked that I change the estima-
tion procedure for all calculations in this article, from 
the current default in the R package, GCV, to an alterna-
tive that may become the default in the future, REML. I 
did, and not a single figure or result was perceivably 
affected by this choice. Second, for transparency’s sake, 
when a researcher deviates from default settings, it 
seems advisable to report results for a few alternative 
settings, ensuring results do not hinge on a specific and 
possibly arbitrary choice or that if they do hinge, that 
this fact is shared with readers (e.g., “We find an 

interaction but only when using REML, not GCV, this 
may be because . . . ”). Third, in terms of reproducibility, 
articles that rely on GAM estimation should include in 
the main text the exact specification ran, for example, a 
footnote that reads “Using the mgcv package Version 
1.8-41, we estimated the model gam(y~s(x)+(z)+ti(x,z)).”

Before moving to the next limitation, I note that speci-
fication ambiguity is not unique to GAMs. Although lin-
ear regressions do not have much ambiguity, many other 
methods already popular in social science do, including 
“mixed models,” structural equation modeling, factor 
analysis, meta-analyses, and so on. Specification ambigu-
ity is a good reason to show robustness or explicitly 
justify choices; it is not a good reason to avoid a tool 
altogether. It would be desirable for articles that rely on 
those methods to also report the exact specification run 
so that readers can find out, for example, whether a 
mixed model included only random intercepts or also 
random slopes.

Limitation 3: wrong p values

The third GAM limitation I consider is that its p values are 
often simply wrong, exhibiting much larger than nominal 
FPRs (see e.g., Fig. 11). This problem appears to be larger 
when predictors in the GAM are correlated. This problem, 
moreover, does not seem to be widely known or appreci-
ated by GAM advocates and users. In this article, however, 
I do provide a promising solution to the inferential prob-
lem with GAMs: bootstrapping under the null. In the 
article, I applied the same bootstrapping approach across 
all examples and simulations. It would seem worthwhile 
for statisticians to make progress understanding what is 
causing the problem with GAMs’ p values and what other 
(possibly superior) solutions exist. In Supplement 4 in the 
Supplemental Material, I report the performance of 10 
alternative implementations of bootstrapping, including 
the one implemented in this article.

Limitation 4: accessibility

Despite being more than 40 years old, GAMs are not 
universally accessible. GAMs are quite accessible to R 
users; one of the packages that implements GAMs, mgcv, 
comes bundled with R (which is unusual; only about 20, 
out of more 15,000, CRAN packages do, highlighting that 
GAMs are not a niche tool). But GAMs are indeed less 
accessible in other software used by social scientists. 
STATA does have a user-contributed GAM module, but 
it has not been updated in a couple of decades and does 
not seem to work with current operating systems 
(Royston & Ambler, 2002; Stata Forum, 2019). GAMs are 
simply not available with more basic statistical tools such 
as Excel, JASP, or SPSS (although SPSS users could rely 
on the R plugin to run mgcv; IBM Support, 2020). I plan 
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on creating an R package that will make creating GAM 
simple slopes a one-line-of-code job. But to rely on GAM 
for testing interactions in observational data, researchers 
will need to learn how to work with GAMs, presumably 
relying on R or Python. This is in my mind GAMs’  
biggest shortcoming, which I return to in the general 
discussion.

General Discussion

In this article, I proposed that social scientists change 
how they test and probe interactions. The toolbox pro-
posed in Table 1 constitutes an important departure from 
current practice. The strength of the case for each of the 
cells in Table 1, however, is not uniform.

The case is strongest for the top-right cell in Table 1, 
for abandoning the linear probing of interactions in data 
from experiments. The case is strongest because going 
from linear to GAM simple slopes conveys virtually no 
cost. The statistical power loss of GAM simple slopes, 
when the true model is exactly linear, is negligible (see 
Fig. 8), whereas the benefits in terms or reducing FPRs 
when the true model is not linear can be dramatic (see 
Fig. 6); the benefits of a richer and more accurate under-
standing of the relationships researchers collect data to 
study is evident to the naked eye (see Figs. 4 and 5). It 
is rare in statistics to have a tool that strictly dominates 
current practice, especially when current practice has 
existed for nearly a century, but that is the case for 
examining interactions with a randomly assigned vari-
able when it comes to choosing GAM simple slopes over 
linear simple slopes.

With observational data in which neither x nor z was 
randomly assigned and for which one thus should not 
expect them to be uncorrelated, the tools proposed in 
Table 1 are also clear improvements over current prac-
tice, but they are not free of meaningful downsides. 
First, for testing interactions, no tool obtained strictly 
nominal FPRs for all scenarios (see Fig. 12). The best 
performing tool, bootstrapped GAM, obtains FPRs 
around 7% in the worst scenarios considered. Although 
7% is higher than the nominal 5%, these excessive rejec-
tion rates, by 2 percentage points, pale in comparison 
with the more than 50% of FPRs obtained by the linear 
model and median splits for a large number of scenarios 
and to the 20% to 30% FPRs in the data from Preacher 
et al. (2006).

Estimating bootstrapped GAMs, however, adds a few 
levels of complexity over current practice. First, one 
needs to go from straightforward linear models to 
sophisticated GAMs. For simple designs, such as those 
present in most experiments, this is a straightforward 
endeavor. But for more complex designs, such as nested 
data, structural equation models, imputation of missing 
data, and so on, the implementation may be harder, the 

documentation may be scarcer, and the evidence that 
those GAM estimates will work properly may be less 
well established. Moreover, the need to rely on boot-
strapping poses a minimal challenge for simple designs 
(this could be accommodated with an easy-to-use func-
tion in an R package), but implementing bootstrapping 
for more complex and idiosyncratic data structures 
requires authors to think deeply about the data-gener-
ating process and proceeding to create a custom boot-
strap procedure, with at least an intermediate level of 
comfort with programing. Realistically speaking, these 
technical steps are not accessible to all, perhaps not 
accessible to most, social scientists. Realistically speak-
ing, then, bootstrapped GAMs will hopefully be used for 
relatively simple data structures with observational data 
but probably will not be used for more complex ones, 
at least not until further work documents, simplifies, and 
establishes the validity of bootstrapped GAMs for those 
types of situations.

For those situations, a twofold solution seems to be 
a promising way forward. First, as indicated in Table 1, 
simply adding quadratic terms for the factors in the x × 
z interaction, as was proposed by various authors around 
30 years ago (Cortina, 1993; Ganzach, 1997; Lubinski & 
Humphreys, 1990), obtains a nominal FPR in most but 
not all cases considered. Second, the main challenge 
with relying on GAMs for more complicated structures 
involves obtaining valid statistical inference, calibrated 
estimates of the standard errors (and thus confidence 
intervals and p values). The estimate part of the GAM 
should still be a valid qualitative description of the func-
tional form that researchers should expect to work well 
in nearly all cases and surely to outperform the arbitrary 
linear model researchers have been using for more than 
a century.

In other words, when a data structure makes it difficult 
to implement the bootstrapped GAM solution, testing the 
interaction with the statistical tool of choice to the analyst 
(structural equation model, mixed model, regression with 
clustered errors, etc.) while simply adding quadratic 
terms for x and z in the x × z interactions and then prob-
ing a documented interaction in a descriptive fashion 
with GAM simple slopes without paying much attention 
to the probably too-tight confidence intervals it reports 
would seem to offer a vast improvement over current 
practice at minimal implementation cost.
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Notes

1. All these models do, of course, allow for nonlinear terms, for 
example, y = ax + bx2, but they are very rarely included when 
testing interactions in practice. Moreover, prominent textbooks 
have warned readers about likely downsides of doing so (Cohen 
et al., 2003, p. 300)
2. Other approaches and names for probing interactions include 
the Johnson-Neyman procedure ( Johnson & Neyman, 1936), 
regions of significance (Preacher et al., 2006), pick-a-point, spot-
light, and floodlight analysis (Spiller et al., 2013). In economics 
and political science, it is common to use the umbrella term 
“marginal effect” for these same but also many other computa-
tions (see e.g., Ai & Norton, 2003; Greene, 2010).
3. In terms of interactions being uncorrelated with omitted non-
linear terms with experimental data, the issue is subtler than it 
may seem at first. If x is a random and independent 0, 1 variable 
and z is a continuous variable, the interaction x × z will typically 
be actually highly correlated with any omitted nonlinear terms of 
z. But what matters for bias is the partial correlation, accounting 
for other predictors in the regression. Because the correlation 
between x × z and omitted nonlinear z terms is mediated by 
the z in x × z, controlling for z eliminates such correlation. For 
example, imagine the true model is y = x + z3 but one estimates 
y = ax + bz + cx × z. Although the omitted term z3 can be highly 
correlated with x × z, the correlation is through the linear term  
z in x × z, and because z is also in the regression, the partial cor-
relation of x × z with z3, controlling for z, is expected to be zero, 
and thus x × z is expected to be unbiased when z is included as 
a main effect as well.
4. Technically speaking, the consequences depend on whether 
the two predictors in the interaction are statistically indepen-
dent. In an experimental design, in which treatment is ran-
domly assigned, usually one expects predictors to be statistically 

independent. In observational data, they are almost never statis-
tically independent. For simplicity, I thus speak of experiment 
versus observational instead of independent versus dependent 
predictors.
5. The following quotes, with bold added for emphasis, docu-
ment equating nonlinear with quadratic:

Lubinski and Humphreys (1990): “Our interpretation of 
the positively accelerated trend corresponds to a similar 
curvilinear (quadratic) phenomenon observed within a 
variety of disparate behavioral domains” (p. 389).

Cortina (1993): “Which nonlinear term or terms should 
be used? . . . psychological phenomena rarely display 
anything more complex than a quadratic trend” (p. 920).

Ganzach (1997): “Note that a curvilinear relationship as 
defined above need not necessarily be quadratic. 
However, for the sake of simplicity, in the current article 
I assume that a true curvilinear relationship is indeed 
quadratic” (p. 236).

6. The Hainmueller et al. (2019) abstract reads,

Current empirical practice tends to overlook two impor-
tant problems. First, these models assume a linear inter-
action effect that changes at a constant rate with the 
moderator. Second, estimates of the conditional effects 
of the independent variable can be misleading if there 
is a lack of common support of the moderator. (p. 163)

7. The three independent segments are estimated jointly; thus, in 
the presence of covariates, the results may be more efficient than 
literally estimating three separate regressions. See Hainmueller  
et al. (2019, Equation 4).
8. Many articles have echoed Cohen’s arguments against dichot-
omization based on statistical power considerations (DeCoster 
et  al., 2009; Humphreys & Fleishman, 1974; Lubinski & 
Humphreys, 1990; Maxwell & Delaney, 1993; McClelland et al., 
2015). In addition, dichotomization destroys information by treat-
ing all values above/below the cutoff the same regardless of how 
far they are from it, limiting the ability to learn functional form.
9. A Google Scholar search for “generalized additive model” 
in May 2022 found only three Psychological Science articles 
(FitzGibbon et al., 2021; E. L. James et al., 2015; Ramscar et al., 
2017).
10. Note that a regression is linear even if it includes nonlinear 
terms. For example, the regression y = x + x2 + e is still “linear” 
in the sense that the effect of x2 on y is assumed to be con-
stant. When x2 increases by 1, y increases by the same amount 
no matter how big or small x2 is. In addition, one can force 
the linearity assumption on some GAM terms, estimating, for 
example gam(y~s(x)+z), where z would enter linearly, as in a 
linear regression.
11. As was pointed out by a reviewer, although the R function is the 
same, stats::predict(), that function is just a wrapper that invokes 
different underlying functions when applied to a linear regression 
object (predict.lm()), versus a GAM object (predict.gam()).
12. The data behind Figures 2d and 4 originated in an article I 
coauthored with Francesca Gino. To the best of my knowledge, 
these data were not tampered with. But even if they were, the 
point that linear and nonlinear simple slopes lead to different 
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conclusions does not hinge on the origin of the data; in fact, most 
figures in this article are based on made-up data (simulations).
13. It is common to compute contrasts at the mean ±1 SD (or 2 
SD). This can be misleading when a variable is not symmetrically 
distributed because one may be focusing on very infrequent, on 
occasion even impossible, values of x. Choosing contrasts based 
on quantiles alleviates the concern.
14. Note that a directional hypothesis with a two-sided test is 
being tested and that often, the true effect is positive rather than 
zero, so the FPR for a perfectly calibrated test would be ≤ 2.5%.
15. A referee pointed out that to justify this intuition, one would 
need to verify that the mean squared error (MSE) of the GAM 
and linear model are essentially the same in these simulations. 
They are. The average ratio between the MSE of the GAM and 
the linear model is 99.8%. See Section 5.4 in R Script available 
from https://researchbox.org/1569.72
16. I received the data set from Kristopher Preacher via email 
on July 8, 2016. I had requested it when working on a different, 
ultimately abandoned, project.
17. Indeed, it is difficult to think of either predictor, antisocial 
behavior or hyperactivity, as having identifiable causal effects 
on math performance and difficult to interpret more generally 
the regression model they estimated, in which the key predictor 
is an interaction but no control variables involve an interaction 
(see Simonsohn, 2019). Moreover, the model includes highly cor-
related predictors (students’ age and the class they are correlated 
at r = .94). It is thus perhaps most reasonable to think of this 
example as a way Preacher et al. (2006) chose to make con-
crete the mathematical steps needed to compute simple slopes 
rather than as an effort to actually obtain interpretable statistical 
estimates. For what it is worth, when the models are estimated 
without covariates, GAM and linear simple slopes are similar 
to one another but different from what Preacher et al. reported 
(with covariates). With covariates, GAM and linear simple slopes 
are more substantially different, linear produce a sign reversal, 
and GAM does not.
18. The package mgcv is a “recommended” package, which 
means that the official distribution of R includes it (you can run 
“library(mgcv)” without installing the package). It is not a “base” 
package, so it has its own version number, separate from R’s, and 
can be updated within an R version; base packages such as stats 
or utils may not be updated.
19. Specifically, I rely on what is known as the “Wild Bootstrap” 
(Davidson & Flachaire, 2008; Liu, 1988; Roodman et al., 2019) 
because it requires assuming only that residuals are symmetri-
cally distributed around any one observation (i.e., that an obser-
vation with an observed residual of, say, +3.5, was just as likely 
ex ante to have instead a residual of −3.5). When relying on the 
wild bootstrap, bootstrapped samples are created by taking fitted 
values from the model and then adding the observed residuals 
multiplied by a random variable. A few options for such random 
variables have been considered, the most intuitive of which is to 
multiply each residual by +1 or by −1 with a 50:50 probability.
20. The 15th and 85th percentiles of conscientiousness in these 
data are 3 and 4.6, respectively. Using 3, the midpoint of the scale, 
for low conscientiousness seemed undesirable, so I used 2.5, 
strictly below the midpoint. The original article by Lawson and 
Kakkar (2022) computed simple slopes at ±1 SD of the moderator.

21. A referee pointed out that instead of relying on bootstrapping, 
one can rely on the gamm() function to deal with nonindepen-
dence of observations. Specifically, this syntax would estimate 
random intercepts for each participant: gamm(y~s(x,k=4), 
family=‘binomial’, random = list(id =~ 1)).
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